Numerical Continuation Techniques for Planar Slow-Fast Systems
نویسندگان
چکیده
Continuation techniques have been known to successfully describe bifurcation diagrams appearing in slow-fast systems with more than one slow variable (see eg. [12]). In this paper we investigate the usefulness of numerical continuation techniques dealing with some solved and some open problems in the study of planar singular perturbations. More precisely, we first verify known theoretical results (thereby showing the reliability of this numerical tool) on the appearance of multiple limit cycles of relaxation-oscillation type and on the existence of multiple critical periods in well-chosen annuli of slow-fast periodic orbits in the plane. We then apply the technique to study the period function in detail.
منابع مشابه
Bifurcation Analysis of Noise-induced Synchronization
We investigate bifurcation phenomena between slow and fast convergences of synchronization errors arising in the proposed synchronization system consisting of two identical nonlinear dynamical systems linked by a common noisy input only. The numerical continuation of the saddle-node bifurcation set of the primary resonance of moments provides an effective identifier of the slow convergence of s...
متن کاملThe Geometry of Slow Manifolds near a Folded Node
This paper is concerned with the geometry of slow manifolds of a dynamical system with two slow and one fast variable. Specifically, we study the dynamics near a folded node singularity, which is known to give rise to so-called canard solutions. Geometrically, canards are intersection curves of two-dimensional attracting and repelling slow manifolds, and they are a key element of slow-fast dyna...
متن کاملExistence of Periodic Solutions of the FitzHugh-Nagumo Equations for an Explicit Range of the Small Parameter
The FitzHugh–Nagumo model describing propagation of nerve impulses in axons is given by fast-slow reaction-diffusion equations, with dependence on a parameter representing the ratio of time scales. It is well known that for all sufficiently small > 0 the system possesses a periodic traveling wave. With the help of computer-assisted rigorous computations, we prove the existence of this periodic ...
متن کاملNear-Optimal Controls of a Fuel Cell Coupled with Reformer using Singular Perturbation methods
A singularly perturbed model is proposed for a system comprised of a PEM Fuel Cell(PEM-FC) with Natural Gas Hydrogen Reformer (NG-HR). This eighteenth order system is decomposedinto slow and fast lower order subsystems using singular perturbation techniques that provides tools forseparation and order reduction. Then, three different types of controllers, namely an optimal full-order,a near-opti...
متن کاملOn Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations
In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations. One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach. Each of methods showed fast convergence in special problems and slow convergence in other o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 12 شماره
صفحات -
تاریخ انتشار 2013