Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells.
نویسندگان
چکیده
Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) in bacteria and by presenting bacterial antigens to T cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naïve T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function. Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to T cells by avoiding lysosomal degradation in DCs. Here, we show that this feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent Salmonella requires functional expression of a type three secretion system (TTSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation, which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.
منابع مشابه
Igh-6(-/-) (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar typhimurium and show impaired Th1 T-cell responses to Salmonella antigens.
In the present study we evaluated the role of B cells in acquired immunity to Salmonella infection by using gene-targeted B-cell-deficient innately susceptible mice on a C57BL/6 background (Igh-6(-/-)). Igh-6(-/-) mice immunized with a live, attenuated aroA Salmonella enterica serovar Typhimurium vaccine strain showed impaired long-term acquired resistance against the virulent serovar Typhimuri...
متن کاملAntibody is required for protection against virulent but not attenuated Salmonella enterica serovar typhimurium.
Resolution of infection with attenuated Salmonella is an active process that requires CD4(+) T cells. Here, we demonstrate that costimulation via the surface molecule CD28, but not antibody production by B cells, is required for clearance of attenuated aroA Salmonella enterica serovar typhimurium. In contrast, specific antibody is critical for vaccine-induced protection against virulent bacteri...
متن کاملInnate immunity mediated by MyD88 signal is not essential for induction of lipopolysaccharide-specific B cell responses but is indispensable for protection against Salmonella enterica serovar Typhimurium infection.
Salmonella organisms are Gram negative and facultative anaerobic bacteria that cause typhoid fever in humans. In this study, we evaluated LPS-specific adaptive immunity in innate immune-deficient mice after oral administration of attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) strains. Of interest, identical levels of LPS-specific IgG and IgA Abs were elicited in the systemi...
متن کاملSalmonella escape from antigen presentation can be overcome by targeting bacteria to Fc gamma receptors on dendritic cells.
Dendritic cells (DCs) are professional APCs with the unique ability to activate naive T cells, which is required for initiation of the adaptive immune response against pathogens. Therefore, interfering with DC function would be advantageous for pathogen survival and dissemination. In this study we provide evidence suggesting that Salmonella enterica serovar typhimurium, the causative agent of t...
متن کاملSalmonella enterica serovar Typhimurium strain lacking pmrG-HM-D provides excellent protection against salmonellosis in murine typhoid model.
The superiority of live attenuated vaccines in systemic salmonellosis has been proven over killed and subunit vaccines, because of its ability to induce protective cell mediated immunity by CD8+ T cells. A live attenuated Salmonella enterica serovar Typhimurium vaccine has been developed by systematic site directed deletion of the pmrG-HM-D chromosomal genomic loci. This gene confers involved i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 74 11 شماره
صفحات -
تاریخ انتشار 2006