A numerical methodology for the Painlevé equations
نویسندگان
چکیده
The six Painlevé transcendents PI -PV I have both applications and analytic properties that make them stand out from most other classes of special functions. Although they have been the subject of extensive theoretical investigations for about a century, they still have a reputation for being numerically challenging. In particular, their extensive pole fields in the complex plane have often been perceived as ‘numerical mine fields’. In the present work, we note that the Painlevé property in fact provides the opportunity for very fast and accurate numerical solutions throughout such fields. When combining a Taylor/Padé-based ODE initial value solver for the pole fields with a boundary value solver for smooth regions, numerical solutions become available across the full complex plane. We focus here on the numerical methodology, and illustrate it for the PI equation. In later studies, we will concentrate on mathematical aspects of both the PI and the higher Painlevé transcendents.
منابع مشابه
Painlevé test and the first Painlevé hierarchy
Starting from the first Painlevé equation, Painlevé type equations of higher order are obtained by using the singular point analysis.
متن کاملPainlevé test and the first Painlevé hierarchy
Starting from the first Painlevé equation, Painlevé type equations of higher order are obtained by using the singular point analysis.
متن کاملP IV WITH BOTH PARAMETERS ZERO : A NUMERICAL STUDY 1 Painlevé IV with Both Parameters Zero : A Numerical Study
The six Painlevé equations were introduced over a century ago, motivated by rather theoretical considerations. Over the last several decades, these equations and their solutions, known as the Painlevé transcendents, have been found to play an increasingly central role in numerous areas of mathematical physics. Due to extensive dense pole fields in the complex plane, their numerical evaluation r...
متن کاملDifferential equations for deformed Laguerre polynomials
The distribution function for the first eigenvalue spacing in the Laguerre unitary ensemble of finite size may be expressed in terms of a solution of the fifth Painlevé transcendent. The generating function of a certain discontinuous linear statistic of the Laguerre unitary ensemble can similarly be expressed in terms of a solution of the fifth Painlevé equation. The methodology used to derive ...
متن کاملOn the Stokes geometry of higher order Painlevé equations
We show several basic properties concerning the relation between the Stokes geometry (i.e., configuration of Stokes curves and turning points) of a higher order Painlevé equation with a large parameter and the Stokes geometry of (one of) the underlying Lax pair. The higherorder Painlevé equation with a large parameter to be considered in this paper is one of the members of PJ -hierarchy with J ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011