Adaptively Simulating Inhomogeneous Elastic Deformation
نویسندگان
چکیده
In this paper, we present an adaptive approach for simulating elastic deformation of homogeneous and inhomogeneous objects based on continuum mechanics. In typical adaptive simulation approaches, the deforming elastic object is usually subdivided to form a tree structure on the fly. However, they are not directly applicable for inhomogeneous elastic deformation, since the elasticity matrix, which describes the stiffness, of each element in each resolution is difficult to estimate at runtime. Furthermore, as most multi-resolution approaches, it is usually required that the stiffness of the object should either be uniform all throughout its body or consist of a collection of uniform parts, otherwise the elasticity matrices for the elements in coarse levels cannot be determined. Hence, we propose a bottom-up sampling approach to estimate the elasticity matrices for all elements in all levels based on a given stiffness function. Moreover, the subdivision process is also moved to the off-line preprocessing stage with the elasticity matrix estimation to reduce the runtime computational cost while achieving the adaptive simulation by adaptively selecting the simulation level on the fly. Therefore, we can efficiently simulate the deformation of an elastic object even with spatially varying stiffness.
منابع مشابه
Characterization of residual stresses generated during inhomogeneous plastic deformation
Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl ) reflections. Intergranular residual elastic strains between subsets of grains are predicted numerically and verified by neu...
متن کاملPattern formation in plants via instability theory of hydrogels
In this paper, we demonstrate how deformation patterns of leaves and fruits in growing and drying processes can be described via the inhomogeneous field theory. The distorted deformation of ribbed leaves and the ridge formation on fruit surfaces can be understood as the energy-minimizing mechanical buckling patterns. The swelling and de-swelling induced instabilities of various membrane structu...
متن کاملA Closed-form Solution to Finite Bending of a Compressible Elastic-perfectly Plastic Rectangular Block*
The self-consistent Eulerian rate-type elastoplastic model based on the logarithmic rate is used to study finite bending of a compressible elastic-perfectly plastic rectangular block. It is found that an explicit closed-form solution for this typical inhomogeneous finite deformation mode may be available in a general case of compressible deformation with a stretch normal to the bending plane, w...
متن کاملNanomechanical sequencing of collagen: tropocollagen features heterogeneous elastic properties at the nanoscale.
Collagen is the most important structural protein in biology and is responsible for the strength and integrity of tissues such as bone, teeth, cartilage and tendon. Here we report a systematic computational sequencing of the effect of amino acid motif variations on the mechanical properties of single tropocollagen molecules, with a particular focus on elastic deformation at varying applied stra...
متن کاملA New Temper Rolling Force Model for Dry Thick Strip Considering Fully Elastic Contact
Temper rolling or skin pass rolling is one of cold rolling processes composed of a horizontal pass cold rolling mill stand. In this process, the thick strip is subjected to very light reduction (0.5–4%) in thickness in the presence of high friction amplitudes. One of the basic parameters of strip rolling processes is temper rolling force. A new rolling force model has been proposed for temper r...
متن کامل