First Principle Evaluation of Photocatalytic Suitability for TiO2-Based Nanotubes
نویسندگان
چکیده
Water splitting under the influence of solar light on semiconducting electrodes Im‐ mersed in aqueous electrolyte is a potentially clean and renewable source for hydrogen fuel production. Its efficiency depends on relative position of the band gap edges (the visible light interval between infrared and ultraviolet (UV) ranges of electromagnetic spectrum corresponds to gap widths 1.5–2.8 eV) accompanied by a proper band alignment relative to both reduction (H/H2) and oxidation (O2/H2O) potentials (−4.44 eV and −5.67 eV on energy scale for vacuum, respectively) which must be positioned inside the band gap. Its width for TiO2 anatase-structured bulk is experimentally found to be 3.2 eV, which corresponds to photocatalytic activity under UV light possessing only ~1% efficiency of sunlight energy conversion. Noticeable growth of this efficiency can be achieved by by adjusting the band gap edges for titania bulk through nanoscale transformation of its morphology to anatase-type nanotubes (NTs) (formed by folding of (001) or (101) nanothin TiO2 sheets consisting of 9 or 6 atomic layers and possessing either (n,0) or (−n,n) chiralities, respectively) accompanied by partial substitution of pristine atoms by CO, FeTi, NO and SO single dopants as well as NO+SO codopants. In the latter case, the band gap can be reduced down to 2.2 eV while the efficiency is achieved up to ~15%. The energy differences between the edges of band gap (VB and CB), the highest occupied and lowest unoccu‐ pied impurity levels inside the band gap (HOIL and LUIL, respectively) induced in doped NTs, while preserving the proper disposition of these levels relatively to the redox potentials, so that εVB <εHOIL <εO2/H2O <εH+/H2 <εLUIL <εCB, thus reducing the photon energy required for dissociation of H2O molecule. In this chapter, we analyze applicabil‐ ity of large-scale first principle calculations on the doped single-wall titania NTs of different morphologies with the aim of establishment of their suitability for photocatalytic water splitting. © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
منابع مشابه
Tuning the selectivity of photocatalytic synthetic reactions using modified TiO2 nanotubes.
Differently modified TiO2 nanotubes were used to achieve a drastic change in the selectivity of a photocatalytic reaction. For the photocatalytic oxidation of toluene, depending on the electronic properties of TiO2 (anatase, rutile, Ru-doped), a strong change in the main reaction product (namely benzoic acid versus benzaldehyde) can be achieved, and certain undesired reaction pathways can be co...
متن کاملSynthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes
A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. ...
متن کاملThe preparation of tubular heterostructures based on titanium dioxide and silica nanotubes and their photocatalytic activity.
Tubular heterostructures based on titanium dioxide (TiO2) and silica nanotubes (SNTs) with high photocatalytic activity have been successfully obtained by a simple combination of an electrospinning technique and a solvothermal process. The as-prepared products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (X...
متن کاملPhotocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation
TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special prec...
متن کاملEnhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials
The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water / alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increas...
متن کامل