Variational Principle for Relative Tail Pressure
نویسندگان
چکیده
We introduce the relative tail pressure to establish a variational principle for continuous bundle random dynamical systems. We also show that the relative tail pressure is conserved by the principal extension.
منابع مشابه
Thermodynamic Formalism for Random Countable Markov Shifts
We introduce a relative Gurevich pressure for random countable topologically mixing Markov shifts. It is shown that the relative variational principle holds for this notion of pressure. We also prove a relative RuellePerron-Frobenius theorem which enables us to construct a wealth of invariant Gibbs measures for locally fiber Hölder continuous functions. This is accomplished via a new constructi...
متن کاملA Local Variational Principle of Pressure and Its Applications to Equilibrium States
We prove a local variational principle of pressure for any given open cover. More precisely, for a given dynamical system (X,T ), an open cover U of X, and a continuous, realvalued function f on X, we show that the corresponding local pressure P (T, f ;U) satisfies P (T, f ;U) = sup{hμ(T,U) + ∫ X f(x)dμ(x) : μ is a T -invariant measure}, and moreover, the supremum can be attained by a T -invari...
متن کامل$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملVariational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کاملVariational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory
The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017