The Riemann Zeta Function on Vertical Arithmetic Progressions
نویسنده
چکیده
We show that the twisted second moments of the Riemann zeta function averaged over the arithmetic progression 12 + i(an + b) with a > 0, b real, exhibits a remarkable correspondance with the analogous continuous average and derive several consequences. For example, motivated by the linear independence conjecture, we show at least one third of the elements in the arithmetic progression an + b are not the ordinates of some zero of ζ(s) lying on the critical line. This improves on earlier work of Martin and Ng. We then complement this result by producing large and small values of ζ(s) on arithmetic progressions which are of the same quality as the best Ω results currently known for ζ( 12 + it) with t real.
منابع مشابه
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملAnalogy between arithmetic of elliptic curves and conics
In this brief note we bring out the analogy between the arithmetic of elliptic curves and the Riemann zeta-function. · · · The aim of this note is to point out the possibility of developing the theory of elliptic curves so that the arithmetical and analytic aspects are developed in strict analogy with the classical theory of the Riemann zeta-function. This has been triggered by Lemmermeyer’s pe...
متن کاملMultiple finite Riemann zeta functions
Observing a multiple version of the divisor function we introduce a new zeta function which we call a multiple finite Riemann zeta function. We utilize some q-series identity for proving the zeta function has an Euler product and then, describe the location of zeros. We study further multi-variable and multi-parameter versions of the multiple finite Riemann zeta functions and their infinite cou...
متن کاملAn Arithmetic Formula for Certain Coefficients of the Euler Product of Hecke Polynomials
Abstract. In 1997 the author [11] found a criterion for the Riemann hypothesis for the Riemann zeta function, involving the nonnegativity of certain coefficients associated with the Riemann zeta function. In 1999 Bombieri and Lagarias [2] obtained an arithmetic formula for these coefficients using the “explicit formula” of prime number theory. In this paper, the author obtains an arithmetic for...
متن کاملOn rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کامل