Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
نویسندگان
چکیده
We present a novel approach for non-stationary Gaussian process regression (GPR), where the three key parameters – noise variance, signal variance and lengthscale – can be simultaneously input-dependent. We develop gradient-based inference methods to learn the unknown function and the non-stationary model parameters, without requiring any model approximations. For inferring the full posterior distribution we use Hamiltonian Monte Carlo (HMC), which conveniently extends the analytical gradient-based GPR learning by guiding the sampling with the gradients. The MAP solution can also be learned with gradient ascent. In experiments on several synthetic datasets and in modelling of temporal gene expression, the non-stationary GPR is shown to give major improvement when modeling realistic input-dependent dynamics.
منابع مشابه
Riemann manifold Langevin and Hamiltonian Monte Carlo methods
The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are requir...
متن کاملRiemannian Manifold Hamiltonian Monte Carlo
The paper proposes a Riemannian Manifold Hamiltonian Monte Carlo sampler to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The method provides a fully automated adaptation mechanism that circumvents the costly pilot runs required to tune proposal densities for Metropolis-Hastings or in...
متن کاملRiemann Manifold Langevin and Hamiltonian Monte Carlo
This paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs required to tu...
متن کاملSlice Sampling on Hamiltonian Trajectories
Hamiltonian Monte Carlo and slice sampling are amongst the most widely used and studied classes of Markov Chain Monte Carlo samplers. We connect these two methods and present Hamiltonian slice sampling, which allows slice sampling to be carried out along Hamiltonian trajectories, or transformations thereof. Hamiltonian slice sampling clarifies a class of model priors that induce closed-form sli...
متن کاملReflection, Refraction, and Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) is a successful approach for sampling from continuous densities. However, it has difficulty simulating Hamiltonian dynamics with non-smooth functions, leading to poor performance. This paper is motivated by the behavior of Hamiltonian dynamics in physical systems like optics. We introduce a modification of the Leapfrog discretization of Hamiltonian dynamics on piec...
متن کامل