Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo

نویسندگان

  • Markus Heinonen
  • Henrik Mannerström
  • Juho Rousu
  • Samuel Kaski
  • Harri Lähdesmäki
چکیده

We present a novel approach for non-stationary Gaussian process regression (GPR), where the three key parameters – noise variance, signal variance and lengthscale – can be simultaneously input-dependent. We develop gradient-based inference methods to learn the unknown function and the non-stationary model parameters, without requiring any model approximations. For inferring the full posterior distribution we use Hamiltonian Monte Carlo (HMC), which conveniently extends the analytical gradient-based GPR learning by guiding the sampling with the gradients. The MAP solution can also be learned with gradient ascent. In experiments on several synthetic datasets and in modelling of temporal gene expression, the non-stationary GPR is shown to give major improvement when modeling realistic input-dependent dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemann manifold Langevin and Hamiltonian Monte Carlo methods

The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are requir...

متن کامل

Riemannian Manifold Hamiltonian Monte Carlo

The paper proposes a Riemannian Manifold Hamiltonian Monte Carlo sampler to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The method provides a fully automated adaptation mechanism that circumvents the costly pilot runs required to tune proposal densities for Metropolis-Hastings or in...

متن کامل

Riemann Manifold Langevin and Hamiltonian Monte Carlo

This paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs required to tu...

متن کامل

Slice Sampling on Hamiltonian Trajectories

Hamiltonian Monte Carlo and slice sampling are amongst the most widely used and studied classes of Markov Chain Monte Carlo samplers. We connect these two methods and present Hamiltonian slice sampling, which allows slice sampling to be carried out along Hamiltonian trajectories, or transformations thereof. Hamiltonian slice sampling clarifies a class of model priors that induce closed-form sli...

متن کامل

Reflection, Refraction, and Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a successful approach for sampling from continuous densities. However, it has difficulty simulating Hamiltonian dynamics with non-smooth functions, leading to poor performance. This paper is motivated by the behavior of Hamiltonian dynamics in physical systems like optics. We introduce a modification of the Leapfrog discretization of Hamiltonian dynamics on piec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016