Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation

نویسندگان

  • Y. C. Cheng
  • R. J. Silbey
  • D. A. da Silva Filho
  • J. P. Calbert
  • J. Cornil
  • J. L. Brédas
چکیده

Quantum-chemical calculations coupled with a tight binding band model are used to study the charge carrier mobilities in oligoacene crystals. The transfer integrals for all nonzero interactions in four crystalline oligoacenes ͑naphthalene, anthracene, tetracene, and pentacene͒ were calculated, and then used to construct the excess electron and hole band structures of all four oligoacene crystals in the tight binding approximation. From these band structures, thermal-averaged velocity– velocity tensors in the constant-free-time and the constant-free-path approximations for all four materials were calculated at temperatures ranging from 2 to 500 K. The bandwidths for these oligoacenes were found to be of the order of 0.1–0.5 eV. Furthermore, comparison of the thermal-averaged velocity–velocity tensors with the experimental mobility data indicates that the simple band model is applicable for temperatures only up to about 150 K. A small-polaron band model is also considered, but the exponential band narrowing effect is found to be incompatible to experimental power law results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

Phase Properties of One-Dimensional Quaternary Photonic Crystals

In this paper, properties of reflection phase in one-dimensional quaternary photonic crystals combining dispersive meta-materials and positive index materials are investigated by transfer matrix method. Two omnidirectional band gaps are located in the band structure of considered structure. However, we limit our studies to the frequency range of the second wide band gap. We observe that the val...

متن کامل

Investigation tow of negative refraction characters in the three different 2D phononic crystals

In this paper, a two-dimensional phononic crystal comprising of steel rod in water is investigated. Three cross- sections for this rod are considered using finite element method (EFM). We plot the equifrequency surface of the first band, because of equifrequency surface convex around the edge of the first Brillouin Zone, we guess the negative effective phononic mass and so negative refraction. ...

متن کامل

A Novel Structure for Optical Channel Drop Filter using Two-Dimensional Photonic Crystals with Square Lattice

In the present paper a novel structure for optical channel drop filter (CDF) based on photonic crystal ring resonator with circular core has been proposed. In order to design the proposed CDF, the plan wave expansion (PWE) method is applied for calculation of band structure and photonic band gap while the transmission characteristics of proposed CDF have been calculated using the finite differe...

متن کامل

Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations†

We estimate the hole mobility for oligoacene crystals using quantum mechanics (QM) to calculate the reorganization energy and electron-transfer coupling matrix elements and molecular dynamics (MD) to do the thermal averaging. Using an incoherent transport model we calculate a hole mobility of 6.5 cm2/(V s) for pentacene crystals at 300 K. This can be compared to recent experimental results of 5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013