Collapsibility in Infinite-Domain Quantified Constraint Satisfaction
نویسندگان
چکیده
In this article, we study the quantified constraint satisfaction problem (QCSP) over infinite domains. We develop a technique called collapsibility that allows one to give strong complexity upper bounds on the QCSP. This technique makes use of both logical and universalalgebraic ideas. We give applications illustrating the use of our technique.
منابع مشابه
The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case
The constraint satisfaction probem (CSP) is a well-acknowledged framework in which many combinatorial search problems can be naturally formulated. The CSP may be viewed as the problem of deciding the truth of a logical sentence consisting of a conjunction of constraints, in front of which all variables are existentially quantified. The quantified constraint satisfaction problem (QCSP) is the ge...
متن کاملCollapsibility and Consistency in Quantified Constraint Satisfaction
The concept of consistency has pervaded studies of the constraint satisfaction problem. We introduce two concepts, which are inspired by consistency, for the more general framework of the quantified constraint satisfaction problem (QCSP). We use these concepts to derive, in a uniform fashion, proofs of polynomial-time tractability and corresponding algorithms for certain cases of the QCSP where...
متن کاملThe complexity of constraint satisfaction games and QCSP
We study the complexity of two-person constraint satisfaction games. An instance of such a game is given by a collection of constraints on overlapping sets of variables, and the two players alternately make moves assigning values from a finite domain to the variables, in a specified order. The first player tries to satisfy all constraints, while the other tries to break at least one constraint;...
متن کاملMaximal Infinite-Valued Constraint Languages
We systematically investigate the computational complexity of constraint satisfaction problems for constraint languages over an infinite domain. In particular, we study a generalization of the well-established notion of maximal constraint languages from finite to infinite domains. If the constraint language can be defined with an ω-categorical structure, then maximal constraint languages are in...
متن کاملInfinite Domain Constraint Satisfaction Problem
The computational and descriptive complexity of finite domain fixed template constraint satisfaction problem (CSP) is a well developed topic that combines several areas in mathematics and computer science. Allowing the domain to be infinite provides a way larger playground which covers many more computational problems and requires further mathematical tools. I will talk about some of the resear...
متن کامل