Signed Domination of Oriented Matroid Systems

نویسنده

  • ARNE BANG HUSEBY
چکیده

The domination function has played an important part in reliability theory. While most of the work in this field has been restricted to various types of network system models, many of the results can be generalized to much wider families of systems associated with matroids. Previous papers have explored the relation between undirected network systems and matroids. In this paper the main focus is on directed network systems and oriented matroids. Classical results for directed network systems include the fact that the signed domination is either +1 or −1 if the network is acyclic, and zero otherwise. It turns out that these results can be generalized to systems derived from oriented matroids. Several classes of such systems will be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oriented matroid systems

The domination invariant has played an important part in reliability theory. While most of the work in this field has been restricted to various types of network system models, many of the results can be generalized to much wider families of systems associated with matroids. A matroid is an ordered pair (F,M), where F is a nonempty finite set and M is a collection of incomparable subsets of F ,...

متن کامل

SIGNED ROMAN DOMINATION NUMBER AND JOIN OF GRAPHS

In this paper we study the signed Roman dominationnumber of the join of graphs. Specially, we determine it for thejoin of cycles, wheels, fans and friendship graphs.

متن کامل

A ug 2 00 5 Las Vergnas cube conjecture and reconstruction properties of the cube matroid February 2 , 2008 Ilda

Las Vergnas Cube Conjecture states that the cube matroid has exactly one class of orientations. We prove that this conjecture is equivalent to saying that the oriented matroid Aff(C), of the affine dependencies of the n-cube C := {−1, 1} over IR, can be reconstructed from the underlying matroid and one of the following partial lists of signed circuits or cocircuits: 1) the signed circuits of ra...

متن کامل

Flows in Oriented Matroids

Recently Hochstättler and Nešetřil [3] introduced the flow lattice of an oriented matroid as generalization of the lattice of all integer flows of a digraph or more general a regular matroid. This lattice is defined as the integer hull of the characteristic vectors of signed circuits. We describe the structure and the dimension of the flow lattice for uniform and rank 3 oriented matroids and co...

متن کامل

Weak signed Roman domination in graphs

A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008