Context-based semantic labeling of human-vehicle interactions in persistent surveillance systems

نویسندگان

  • Vinayak Elangovan
  • Amir Shirkhodaie
چکیده

The improved Situational awareness in Persistent Surveillance Systems (PSS) is an ongoing research effort of the Department of Defense. Most PSS generate huge volume of raw data and they heavily rely on human operators to interpret and inference data in order to detect potential threats. Many outdoor apprehensive activities involve vehicles as their primary source of transportation to and from the scene where a plot is executed. Vehicles are employed to bring in and take out ammunitions, supplies, and personnel. Vehicles are also used as a disguise, hide-out, a meeting place to execute threat plots. Analysis of the Human-Vehicle Interactions (HVI) helps us to identify cohesive patterns of activities representing potential threats. Identification of such patterns can significantly improve situational awareness in PSS. In our approach, image processing technique is used as the primary source of sensing modality. We use HVI taxonomy as a means for recognizing different types of HVI activities. HVI taxonomy may comprise multiple threads of ontological patterns. By spatiotemporal linking of ontological patterns, a HVI pattern is hypothesized to pursue a potential threat situation. The proposed technique generates semantic messages describing ontology of HVI. This paper also discusses a vehicle zoning technique for HVI semantic labeling and demonstrates efficiency and effectiveness of the proposed technique for identifying HVI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Imagery Techniques for Semantic Labeling of Human- Vehicle Interactions in Persistent Surveillance Systems

Semantic labeling of Human-Vehicle Interactions (HVI) helps in fusion, characterization, and understanding cohesive patterns that when analyzed and reasoned, they may jointly reveal pertinent threats. Various Persistent Surveillance System (PSS) imagery techniques have been proposed in the past for identifying human interactions with various objects in the environment. Understanding of such int...

متن کامل

A Context-aware Architecture for Mental Model Sharing through Semantic Movement in Intelligent Agents

Recent studies in multi-agent systems are paying increasingly more attention to the paradigm of designing intelligent agents with human inspired concepts. One of the main cognitive concepts driving the core of many recent approaches in multi agent systems is shared mental models. In this paper, we propose an architecture for sharing mental models based on a new concept called semantic movement....

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011