Motility-Induced Phase Separation
نویسندگان
چکیده
Self-propelled particles include both self-phoretic synthetic colloids and various micro-organisms. By continually consuming energy, they bypass the laws of equilibrium thermodynamics. These laws enforce the Boltzmann distribution in thermal equilibrium: the steady state is then independent of kinetic parameters. In contrast, self-propelled particles tend to accumulate where they move more slowly. They may also slow down at high density, for either biochemical or steric reasons. This creates positive feedback which can lead to motility-induced phase separation (MIPS) between dense and dilute fluid phases. At leading order in gradients, a mapping relates variable-speed, self-propelled particles to passive particles with attractions. This deep link to equilibrium phase separation is confirmed by simulations, but generally breaks down at higher order in gradients: new effects, with no equilibrium counterpart, then emerge. We give a selective overview of the fast-developing field of MIPS, focusing on theory and simulation but including a brief speculative survey of its experimental implications. 1 ar X iv :1 40 6. 35 33 v1 [ co nd -m at .s of t] 1 3 Ju n 20 14
منابع مشابه
Fabrication of Gelatin Scaffolds Using Thermally Induced Phase Separation Technique
Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with differ...
متن کاملCentral composite experimental design applied to fabrication of LLDPE microporous membrane via thermally induced phase separation (TIPS) method
متن کامل
Motility-Induced Phase Separation of Active Particles in the Presence of Velocity Alignment
متن کامل
Preparation and characterization of polyethylene/ glass fiber composite membrane prepared via thermally induced phase separation method
Grinded glass fiber (GGF) embedded high density polyethylene (HDPE) membranes were prepared via thermally induced phase separation method. FESEM images showed that all the membranes had leafy structure, indicating a solid-liquid mechanism during phase separation. The results of EDX and TGA analyses confirmed that the fibers were dispersed in the HDPE matrix uniformly. Normalized water flux of t...
متن کاملInterface stability, interface fluctuations, and the Gibbs-Thomson relationship in motility-induced phase separations.
Minimal models of self-propelled particles with short-range volume exclusion interactions have been shown to exhibit the signatures of phase separation. Here I show that the observed interfacial stability and fluctuations in motility-induced phase separations (MIPS) can be explained by modeling the microscopic dynamics of the active particles in the interfacial region. In addition, I demonstrat...
متن کامل