The Lindeberg central limit theorem

نویسنده

  • Jordan Bell
چکیده

Theorem 1. If μ ∈P(R) has finite kth moment, k ≥ 0, then, writing φ = μ̃: 1. φ ∈ C(R). 2. φ(v) = (i) ∫ R x edμ(x). 3. φ is uniformly continuous. 4. |φ(v)| ≤ ∫ R |x| dμ(x). 1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., p. 515, Theorem 15.15; http://individual.utoronto.ca/ jordanbell/notes/narrow.pdf 2Onno van Gaans, Probability measures on metric spaces, http://www.math.leidenuniv. nl/~vangaans/jancol1.pdf; Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 365, Theorem 25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of a Non-Commutative Central Limit Theorem by the Lindeberg Method

A Central Limit Theorem for non-commutative random variables is proved using the Lindeberg method. The theorem is a generalization of the Central Limit Theorem for free random variables proved by Voiculescu. The Central Limit Theorem in this paper relies on an assumption which is weaker than freeness.

متن کامل

The Martingale Central Limit Theorem

One of the most useful generalizations of the central limit theorem is the martingale central limit theorem of Paul Lévy. Lévy was in part inspired by Lindeberg’s treatment of the central limit theorem for sums of independent – but not necessarily identically distributed – random variables. Lindeberg formulated what, in retrospect, is the right hypothesis, now known as the Lindeberg condition,1...

متن کامل

A Probabilistic Proof of the Lindeberg-Feller Central Limit Theorem

The Central Limit Theorem, one of the most striking and useful results in probability and statistics, explains why the normal distribution appears in areas as diverse as gambling, measurement error, sampling, and statistical mechanics. In essence, the Central Limit Theorem states that the normal distribution applies whenever one is approximating probabilities for a quantity which is a sum of ma...

متن کامل

Lindeberg Method for Mixing Sequences 37

We extend the Lindeberg method for the central limit theorem to strongly mixing sequences. Here we obtain a generalization of the central limit theorem of Doukhan, Massart and Rio to nonsta-tionary strongly mixing triangular arrays. The method also provides estimates of the L evy distance between the distribution of the normalized sum and the standard normal.

متن کامل

Gaussian Measures as Limits on Irreducible Symmetric Spaces and Cones

We prove central limit theorems of Lindeberg-L evy and Lindeberg-Feller type for any K-invariant random variables on all irreducible symmetric spaces and irreducible symmetric cones, completing in this way the numerous partial results known before. In all cases the limit measures turn out to be Gaussian and being such a limit characterizes these measures. On the other hand we show that other cl...

متن کامل

A central limit theorem for triangular arrays of weakly dependent random variables

We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi (1999). The proof uses an apparently new variant of the Lindeberg method where the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015