Cell wall mannan and cell surface hydrophobicity in Candida albicans serotype A and B strains.

نویسندگان

  • James Masuoka
  • Kevin C Hazen
چکیده

Cell surface hydrophobicity contributes to the pathogenesis of the opportunistic fungal pathogen Candida albicans. Previous work demonstrated a correlation between hydrophobicity status and changes in the acid-labile, phosphodiester-linked beta-1,2-oligomannoside components of the N-linked glycans of cell wall mannoprotein. Glycan composition also defines the two major serotypes, A and B, of C. albicans strains. Here, we show that the cell surface hydrophobicity of the two serotypes is qualitatively different, suggesting that the serotypes may differ in how they modulate cell surface hydrophobicity status. The cell wall mannoproteins from hydrophilic and hydrophobic cells of both serotypes were compared to determine whether the glycan differences due to serotype affect the glycan differences due to hydrophobicity status. Composition analysis showed that the protein, hexose, and phosphate contents of the mannoprotein fraction did not differ significantly among the strains tested. Electrophoretic profiles of the acid-labile mannan differed only with hydrophobicity status, not serotype, though some strain-specific differences were observed. Furthermore, a newly available beta-1,2-oligomannoside ladder allowed unambiguous identification of acid-labile mannan components. Finally, to assess whether the acid-stable mannan also affects cell surface hydrophobicity status, this fraction was fragmented into its component branches by acetolysis. The electrophoretic profiles of the acid-stable branches were very similar regardless of hydrophobicity status. However, differences were observed between serotypes. These results support and extend our current model that modification of the acid-labile beta-1,2-oligomannoside chain length but not modification of the acid-stable region is one common mechanism by which switching of cell surface hydrophobicity status of C. albicans strains occurs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Hydrophobicity Changes of Two Candida albicans Serotype B mnn4 Mutants

Cell surface hydrophobicity (CSH) of Candida species enhances virulence by promoting adhesion to host tissues. Biochemical analysis of yeast cell walls has demonstrated that the most significant differences between hydrophobic and hydrophilic yeasts are found in the acid-labile fraction of Candida albicans phosphomannoprotein, suggesting that this fraction is important in the regulation of the ...

متن کامل

Comparison of cell wall proteins in putative Candida albicans & Candida dubliniensis by using modified staining method & SDSPAGE

 Background: Candida species are among the most common causes of opportunistic fungal diseases. Among Candida species, Candida albicans is responsible for most infections. Having many strains, C. albicans is very polymorph. C. dubliniensis is very similar to albicans species both morphologically and physiologically. For an infection to occur, cell wall proteins play an important role as they en...

متن کامل

Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity.

Cell surface hydrophobicity (CSH) has been shown to be an important factor in the ability of the opportunistic pathogenic yeast Candida albicans to adhere to surfaces. Hydrophobic cells adhere more readily to host tissue, and are more resistant to phagocytic killing, than hydrophilic cells. Consequently, CSH plays an important role in the pathogenicity of C. albicans. Previous work suggested a ...

متن کامل

Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms.

The structure of the cell-wall mannan from the J-1012 (serotype A) strain of the polymorphic yeast Candida albicans was determined by acetolysis under mild conditions followed by HPLC and sequential NMR experiments. The serotype A mannan contained beta-1,2-linked mannose residues attached to alpha-1,3-linked mannose residues and alpha-1,6-linked branching mannose residues. Using a beta-1,2-mann...

متن کامل

Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells.

The CSH1 gene product is the first protein implicated to affect the phenotype of cell surface hydrophobicity in Candida albicans. Ablation of expression of CSH1 resulted in a 75% loss of the cell surface hydrophobicity (CSH) phenotype. When the C. albicans csh1 knockout derivative was cultured from frozen stocks, it had reacquired CSH levels similar to the parent strain and isogenic reintegrant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 72 11  شماره 

صفحات  -

تاریخ انتشار 2004