Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene.
نویسندگان
چکیده
Chronic exposure of humans to benzene (BZ) causes acute myeloid leukemia (AML). Both BZ and therapy-related secondary AML are characterized by chromosomal translocations that may occur by inappropriate recombinational events. DNA topoisomerase II (topo II) is an essential sulfhydryl (SH)-dependent endonuclease required for replication, recombination, chromosome segregation, and chromosome structure. Topo II cleaves DNA at purine(R)/pyrimidine(Y) repeat sequences that have been shown to be highly recombinogenic in vivo. Certain antineoplastic drugs stabilize topo II-DNA cleavage complexes at RY repeat sequences, which leads to translocations of the type observed in leukemia. Hydroquinone (HQ) is metabolized to p-benzoquinone (BQ) in a peroxidase-mediated reaction in myeloid progenitor cells. BQ interacts wit SH groups of SH-dependent enzymes. Consequently, the aims of this research were to determine whether HQ and BQ are topo II inhibitors. The ability of the compounds to inhibit the activity of topo III was tested using an assay system that depends on the conversion, by homogeneous human topo II, of catenated kinetoplast DNA into open and/or nicked open circular DNA that can be separated from the catenated DNA by electrophoresis in a 1% agarose-ethidium bromide gel. We provide preliminary data that indicate that both HQ and BQ cause a time and concentration (microM)-dependent inhibition of topo II activity. These compounds, which potentially can form adducts with DNA, have no effect on the migration of the supercoiled and open circular forms in the electrophoretic gradient, and BQ-adducted KDNA can be decatenated by topo II. Using a pRYG plasmid DNA with a single RY repeat as a cleavage site, it was determined that BQ does not stimulate the production of linear DNA indicative of an inhibition of topo II religation of strand breaks by stabilization of the covalent topo III-DNA cleavage complex. Rather, BQ most probably inhibits the SH-dependent topo II by binding to an essential SH group. The inhibition of topo II by BQ has implications for the formation of deleterious translocations that may be involved in BZ-induced initiation of leukemogenesis.
منابع مشابه
Inhibition of human topoisomerase II in vitro by bioactive benzene metabolites.
Benzene is a clastogenic and carcinogenic agent that induces acute myelogenous leukemia in humans and multiple of tumors in animals. Previous research has indicated that benzene must first be metabolized to one or more bioactive species to exert its myelotoxic and genotoxic effects. To better understand the possible role of individual benzene metabolites in the leukemogenic process, as well as ...
متن کاملMechanistic considerations in benzene physiological model development.
Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) ...
متن کاملHomologous recombination initiated by benzene metabolites: a potential role of oxidative stress.
Benzene is a ubiquitous pollutant and known human leukemogen. Benzene can be enzymatically bioactivated to reactive intermediates that can lead to increased formation of reactive oxygen species (ROS). ROS formation can directly induce DNA double-strand breaks, and also oxidize nucleotides that are subsequently converted to double-strand breaks during DNA replication that can be repaired through...
متن کاملRole of oxygen radicals in induction of DNA damage by metabolites of benzene.
Benzene is strongly suspected of being an animal and human carcinogen, but the mechanisms by which benzene induces tumors of lymphoid and hematopoietic organs are unknown. Binding studies in vivo suggest a very low level of covalent binding to the DNA of bone marrow elements. Since several metabolites of benzene have the potential to undergo autooxidation and thereby generate reactive oxygen in...
متن کاملRole of Oxygen Radicals in Induction of DNA Damage by Metabolites of Benzene1
Benzene is strongly suspected of being an animal and human carcino gen, but the mechanisms by which benzene induces tumors of lymphoid and hematopoietic organs are unknown. Binding studies in vivo suggest a very low level of covalent binding to the DNA of bone marrow elements. Since several metabolites of benzene have the potential to undergo autooxidation and thereby generate reactive oxygen i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 104 شماره
صفحات -
تاریخ انتشار 1996