Ab initio interpolated potential energy surface and classical reaction dynamics for HCO+ + H, HOC+ + H, and deuterated analogues.

نویسندگان

  • Gloria E Moyano
  • Seth A Jones
  • Michael A Collins
چکیده

Classical simulations of the reactions between HCO+/COH+ and hydrogen atoms, as well as their deuterated variants, have been carried out on an ab initio interpolated potential energy surface. The surface is constructed at the quadratic configuration interaction with single and double excitation level of ab initio calculation. At low energies we observe reaction channels associated with the isomerization of the cation, hydrogen/deuterium exchange, and the combination of isomerization with exchange. The HCO+/DCO+ ions only undergo exchange, and deuteration is more facile than the release of deuterium. The COH+/COD+ ions undergo isomerization or isomerization combined with exchange, the latter being the dominant reaction channel. Deuteration is again more facile than the release of deuterium, in combination with isomerization. These results are consistent with experimental measurements and with hypotheses on the deuteration of molecules in the interstellar medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction Dynamics of NH2+OH on an Interpolated Potential Energy Surface

QCT calculations were performed to study the behavior of energized NH2OH formed by association collision of NH2 radical with OH radical. A potential energy surface that describes the behavior of the title reaction has been constructed by interpolation of ab initio data. H2O, HON, HNO, NH3, O, H2NO, cis or trans-HONH, and H products and two vibrationally energized NH2OH and NH3O adducts were obs...

متن کامل

The dynamics of the H2 + CO+ reaction on an interpolated potential energy surface.

A potential energy surface that describes the title reaction has been constructed by interpolation of ab initio data. Classical trajectory studies on this surface show that the total reaction rate is close to that predicted by a Langevin model, although the mechanism is more complicated than simple ion-molecule capture. Only the HCO(+) + H product is observed classically. An estimate of the mag...

متن کامل

Pathways and reduced-dimension five-dimensional potential energy surface for the reactions H3+ + CO-->H2+HCO+ and H3+ + CO-->H2+HOC+.

To obtain theoretical insight regarding the stability and formation dynamics of the interstellar ions HCO(+) and HOC(+), stationary points and the associated vibrational frequencies on the full nine-dimensional potential energy surface for the electronic ground state have been calculated using coupled-cluster theory with both single and double substitutions (CCSD). The energetics were refined w...

متن کامل

The HCO Potential Energy Surface; Probes Using Molecular Scattering and Photodissociation

The results from three recent types of experiment investigating the interaction potential between a hydrogen atom and a carbon monoxide molecule are summarized and compared to theoretical predictions based on an ab initio HCO potential energy surface. In the first experiment, energetic hydrogen atoms generated in the photolysis of H2S collisionally excite CO molecules to high rotational levels ...

متن کامل

Interpolated potential energy surfaces and dynamics for atom exchange between H and H3(+), and D and H3(+).

Two ab initio interpolated potential energy surfaces have been constructed to study the dynamics of atomic hydrogen/deuterium exchange in collisions of H(3)(+) with H (D). One of the surfaces is based on energy calculations using quadratic configuration interaction with single and double excitations. The second includes a perturbative treatment of the triple excitations and an additive correcti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 124 12  شماره 

صفحات  -

تاریخ انتشار 2006