Role of support-nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites.
نویسندگان
چکیده
The understanding of the atomic-scale structural and chemical ordering in supported nanosized alloy particles is fundamental for achieving active catalysts by design. This report shows how such knowledge can be obtained by a combination of techniques including X-ray photoelectron spectroscopy and synchrotron radiation based X-ray fine structure absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis, and how the support-nanoalloy interaction influences the catalytic activity of ternary nanoalloy (platinum-nickel-cobalt) particles on three different supports: carbon, silica, and titania. The reaction of carbon monoxide with oxygen is employed as a probe to the catalytic activity. The thermochemical processing of this ternary composition, in combination with the different support materials, is demonstrated to be capable of fine-tuning the catalytic activity and stability. The support-nanoalloy interaction is shown to influence structural and chemical ordering in the nanoparticles, leading to support-tunable active sites on the nanoalloys for oxygen activation in the catalytic oxidation of carbon monoxide. A nickel/cobalt-tuned catalytic site on the surface of nanoalloy is revealed for oxygen activation, which differs from the traditional oxygen-activation sites known for oxide-supported noble metal catalysts. The discovery of such support-nanoalloy interaction-enabled oxygen-activation sites introduces a very promising strategy for designing active catalysts in heterogeneous catalysis.
منابع مشابه
Design of Ternary Nanoalloy Catalysts: Effect of Nanoscale Alloying and Structural Perfection on Electrocatalytic Enhancement
The ability to tune the atomic-scale structural and chemical ordering in nanoalloy catalysts is essential for achieving the ultimate goal of high activity and stability of catalyst by design. This article demonstrates this ability with a ternary nanoalloy of platinum with vanadium and cobalt for oxygen reduction reaction in fuel cells. The strategy is to enable nanoscale alloying and structural...
متن کاملAtomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction Reaction
For oxygen reduction reaction (ORR) over alloy electrocatalysts, the understanding of how the atomic arrangement of the metal species in the nanocatalysts is responsible for the catalytic enhancement is challenging for achieving better design and tailoring of nanoalloy catalysts. This paper reports results of an investigation of the atomic structures and the electrocatalytic activities of terna...
متن کاملAtomic-structural synergy for catalytic CO oxidation over palladium-nickel nanoalloys.
Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly active and stable catalysts. However, the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy cata...
متن کاملGold−Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites
Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold−copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different composition...
متن کاملNanoalloy catalysts for electrochemical energy conversion and storage reactions
A key challenge to the exploration of electrochemical energy conversion and storage is the ability to engineer the catalyst with low cost, high activity and high stability. Existing catalysts often contain a high percentage of noble metals such as Pt and Pd. One important approach to this challenge involves alloying noble metals with other transition metals in the form of a nanoalloy, which pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 36 شماره
صفحات -
تاریخ انتشار 2012