A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling

نویسندگان

  • Emma Hart
  • Kevin Sim
چکیده

We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conquer approach in which each heuristic solves a unique subset of the instance set considered. NELLI-GP extends an existing ensemble method called NELLI by introducing a novel heuristic generator that evolves heuristics composed of linear sequences of dispatching rules: each rule is represented using a tree structure and is itself evolved. Following a training period, the ensemble is shown to outperform both existing dispatching rules and a standard genetic programming algorithm on a large set of new test instances. In addition, it obtains superior results on a set of 210 benchmark problems from the literature when compared to two state-of-the-art hyper-heuristic approaches. Further analysis of the relationship between heuristics in the evolved ensemble and the instances each solves provides new insights into features that might describe similar instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Programming Based Hyper-heuristics for Dynamic Job Shop Scheduling: Cooperative Coevolutionary Approaches

Job shop scheduling (JSS) problems are optimisation problems that have been studied extensively due to their computational complexity and application in manufacturing systems. This paper focuses on a dynamic JSS problem to minimise the total weighted tardiness. In dynamic JSS, jobs’ attributes are only revealed after they arrive at the shop floor. Dispatching rule heuristics are prominent appro...

متن کامل

Reference Point Adaption Method for Genetic Programming Hyper-Heuristic in Many-Objective Job Shop Scheduling

Job Shop Scheduling is an important combinatorial optimisation problem in practice. It usually contains many (four or more) potentially conflicting objectives such as makespan and mean weighted tardiness. On the other hand, evolving dispatching rules using genetic programming has demonstrated to be a promising approach to solving job shop scheduling due to its flexibility and scalability. In th...

متن کامل

Heuristic Approach for Specially Structured Two Stage Flow Shop Scheduling to Minimize the Rental Cost, Processing Time, Set Up Time Are Associated with Their Probabilities Including Transportation Time and Job Weightage

The present paper is an attempt to develop a new heuristic algorithm, find the optimal sequence to minimize the utilization time of the machines and hence their rental cost for two stage specially structured flow shop scheduling under specified rental policy in which processing times and set up time are associated with their respective probabilities including transportation time. Further jo...

متن کامل

Dynamic Job Shop Scheduling Under Uncertainty Using Genetic Programming

Job shop scheduling(JSS) is a hard problem with most of the research focused on scenarios with the assumption that the shop parameters such as processing times, due dates are constant. But in the real world uncertainty in such parameters is a major issue. In this work, we investigate a genetic programming based hyper-heuristic approach to evolving dispatching rules suitable for dynamic job shop...

متن کامل

Investigating the Generality of Genetic Programming Based Hyper-heuristic Approach to Dynamic Job Shop Scheduling with Machine Breakdown

Dynamic job shop scheduling (DJSS) problems are combinatorial optimisation problems that have been extensively studied in the literature due to their difficulty and their applicability to real-world manufacturing systems, e.g., car manufacturing systems. In a DJSS problem instance, jobs arrive on the shop floor to be processed on specific sequences of machines on the shop floor and unforeseen e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolutionary computation

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2016