On the Fisher Metric of Conditional Probability Polytopes

نویسندگان

  • Guido Montúfar
  • Johannes Rauh
  • Nihat Ay
چکیده

We consider three different approaches to define natural Riemannian metrics on polytopes of stochastic matrices. First, we define a natural class of stochastic maps between these polytopes and give a metric characterization of Chentsov type in terms of invariance with respect to these maps. Second, we consider the Fisher metric defined on arbitrary polytopes through their embeddings as exponential families in the probability simplex. We show that these metrics can also be characterized by an invariance principle with respect to morphisms of exponential families. Third, we consider the Fisher metric resulting from embedding the polytope of stochastic matrices in a simplex of joint distributions by specifying a marginal distribution. All three approaches result in slight variations of products of Fisher metrics. This is consistent with the nature of polytopes of stochastic matrices, which are Cartesian products of probability simplices. The first approach yields a scaled product of Fisher metrics; the second, a product of Fisher metrics; and the third, a product of Fisher metrics scaled by the marginal distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bankruptcy analysis with self-organizing maps in learning metrics

We introduce a method for deriving a metric, locally based on the Fisher information matrix, into the data space. A self-organizing map (SOM) is computed in the new metric to explore financial statements of enterprises. The metric measures local distances in terms of changes in the distribution of an auxiliary random variable that reflects what is important in the data. In this paper the variab...

متن کامل

ON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH

In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.

متن کامل

Probability Density Functions from the Fisher Information Metric

We show a general relation between the spatially disjoint product of probability density functions and the sum of their Fisher information metric tensors. We then utilise this result to give a method for constructing the probability density functions for an arbitrary Riemannian Fisher information metric tensor. We note further that this construction is extremely unconstrained, depending only on...

متن کامل

Gender and the Factors Affecting Child Labor in Iran: an Application of IV-TOBIT Model

In this paper we first intend to examine the probability of falling into the realm of child labor by using conditional probability theorem. Furthermore, we will compare the extent of each factor’s effect on boys and girls using a TOBIT regression model. Finally we will analyze aspects of Iran’s labor market to assess the future ahead of the children who work at present. As the results will show...

متن کامل

Random Polynomials with Prescribed Newton Polytope

The Newton polytope Pf of a polynomial f is well known to have a strong impact on its behavior. The Kouchnirenko-Bernstein theorem asserts that even the number of simultaneous zeros in (C∗)m of a system of m polynomials depends on their Newton polytopes. In this article, we show that Newton polytopes further have a strong impact on the distribution of mass and zeros of polynomials, the basic th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014