Visualization of an Alphaherpesvirus Membrane Protein That Is Essential for Anterograde Axonal Spread of Infection in Neurons
نویسندگان
چکیده
UNLABELLED Pseudorabies virus (PRV), an alphaherpesvirus with a broad host range, replicates and spreads in chains of synaptically connected neurons. The PRV protein Us9 is a small membrane protein that is highly conserved among alphaherpesviruses and is essential for anterograde axonal spread in neurons. Specifically, the Us9 protein is required for the sorting of newly assembled PRV particles into axons. However, the molecular details underlying the function of Us9 are poorly understood. Here we constructed PRV strains that express functional green fluorescent protein (GFP)-Us9 fusion proteins in order to visualize axonal transport of viral particles in infected rat superior cervical ganglion neurons. We show that GFP-Us9-labeled structures are transported exclusively in the anterograde direction within axons. Additionally, the vast majority of anterograde-directed capsids (labeled with VP26-monomeric red fluorescent protein) and a viral membrane protein (labeled with glycoprotein M fused to mCherry) are cotransported with GFP-Us9 in the anterograde direction. In contrast, during infection with PRV strains that express nonfunctional mutant GFP-Us9 proteins, cotransport of mutant GFP-Us9 with capsids in axons is abolished. These findings show that axonal sorting of progeny viral particles is dependent upon the association of viral structures with membranes that contain functional Us9 proteins. This association is required for anterograde spread of infection in neurons. IMPORTANCE Alphaherpesviruses, such as pseudorabies virus (PRV), are parasites of the mammalian nervous system. These viruses spread over long distances in chains of synaptically connected neurons. PRV encodes several proteins that mediate directed virion transport and spread of infection. Us9 is a highly conserved viral membrane protein that is essential for anterograde neuronal spread of infection. In the absence of Us9, newly replicated viral particles are assembled in the cell body but are not sorted into or transported within axons. Here, we constructed and characterized novel PRV strains that express functional green fluorescent protein (GFP)-Us9 fusion proteins in order to visualize its localization in living neurons during infection. This enabled us to better understand the function of Us9 in facilitating the spread of infection. We show that all viral particles moving in the anterograde direction are labeled with GFP-Us9, suggesting that the presence of Us9 determines the capacity for directed transport within axons.
منابع مشابه
Efficient axonal localization of alphaherpesvirus structural proteins in cultured sympathetic neurons requires viral glycoprotein E.
Pseudorabies virus (PRV) glycoprotein E (gE) is a type I viral membrane protein that facilitates the anterograde spread of viral infection from the peripheral nervous system to the brain. In animal models, a gE-null mutant infection spreads inefficiently from presynaptic neurons to postsynaptic neurons (anterograde spread of infection). However, the retrograde spread of infection from post- to ...
متن کاملKinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons.
During infection of the nervous system, alphaherpesviruses-including pseudorabies virus (PRV)-use retrograde axonal transport to travel toward the neuronal cell body and anterograde transport to traffic back to the cell periphery upon reactivation from latency. The PRV protein Us9 plays an essential but unknown role in anterograde viral spread. To determine Us9 function, we identified viral and...
متن کاملFusion of enhanced green fluorescent protein to the pseudorabies virus axonal sorting protein Us9 blocks anterograde spread of infection in mammalian neurons.
Pseudorabies virus encodes a membrane protein (Us9) that is essential for the axonal sorting of virus particles within neurons and anterograde spread in the mammalian nervous system. Enhanced green fluorescent protein (GFP)-tagged Us9 mimicked the trafficking properties of the wild-type protein in nonneuronal cells. We constructed a pseudorabies virus strain that expressed Us9-GFP and tested it...
متن کاملIn vitro analysis of transneuronal spread of an alphaherpesvirus infection in peripheral nervous system neurons.
The neurotropic alphaherpesviruses invade and spread in the nervous system in a directional manner between synaptically connected neurons. Until now, this property has been studied only in living animals and has not been accessible to in vitro analysis. In this study, we describe an in vitro system in which cultured peripheral nervous system neurons are separated from their neuron targets by an...
متن کاملRole of Us9 Phosphorylation in Axonal Sorting and Anterograde Transport of Pseudorabies Virus
Alphaherpes viruses, such as pseudorabies virus (PRV), undergo anterograde transport in neuronal axons to facilitate anterograde spread within hosts. Axonal sorting and anterograde transport of virions is dependent on the viral membrane protein Us9, which interacts with the host motor protein Kif1A to direct transport. Us9-Kif1A interactions are necessary but not sufficient for these processes,...
متن کامل