A catecholaminergic sensory neuron phenotype in cranial derivatives of the neural crest: regulation by cell aggregation and nerve growth factor.
نویسنده
چکیده
Tyrosine hydroxylase (TH) is transiently detectable in cells distributed throughout cranial sensory ganglia during early stages of gangliogenesis [embryonic day (E) 10.5-15.5]. Although TH cells appear in embryonic ganglia of both neural crest and placode origin, mature cranial sensory neurons that express catecholaminergic properties are restricted to placode derivatives. The mechanism(s) underlying the loss of TH expression in crest-derived sensory ganglia is unknown, and the present study was undertaken to define the temporal regulation of this phenotype. Our data indicate that transient TH cells belong to a large subset of primary sensory neurons that exhibit the capability to express TH throughout development. The lack of TH expression after E15.5 appears to be due to modulation of this catecholaminergic potential. The phenotype reappears, however, when E16.5 and older ganglia are dissociated in culture into single cells, suggesting that factors associated with cell aggregation modulate TH expression. In support of this hypothesis, sensory neurons grown at high cell density exhibit lower levels of TH expression than low-density cultures. The decrease in TH levels seen at high density was associated with changes in sensory neuron morphology that are characteristic of ganglion cell maturation in vivo; therefore, modulation of TH expression may be only one facet of a more general program of sensory neuron differentiation associated with cell aggregation in developing ganglia. In contrast to the effects of cell aggregation, treatment with NGF increased the proportion of TH cells in dissociate cultures of E14.5 and E16.5 cranial sensory ganglia. Our findings indicate that sensory transmitter phenotype may be modulated by multiple factors during gangliogenesis, including cellular interactions intrinsic to the developing ganglionic microenvironment.
منابع مشابه
Differences and similarities in the neurotrophic growth factor requirements of sensory neurons derived from neural crest and neural placode.
This article reviews recent studies that have examined differences and similarities in the neurotrophic growth factor requirements of neural crest- and neural placode-derived sensory neurons of the developing chick embryo. From in vitro experiments using both explant and dissociated, neuron-enriched cultures of spinal and cranial nerve sensory neurons, it has been established that only sensory ...
متن کاملNeuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells.
Neuropilin (NRP) receptors and their class 3 semaphorin (SEMA3) ligands play well-established roles in axon guidance, with loss of NRP1, NRP2, SEMA3A or SEMA3F causing defasciculation and errors in growth cone guidance of peripherally projecting nerves. Here we report that loss of NRP1 or NRP2 also impairs sensory neuron positioning in the mouse head, and that this defect is a consequence of in...
متن کاملA novel spalt gene expressed in branchial arches affects the ability of cranial neural crest cells to populate sensory ganglia.
Cranial neural crest cells differentiate into diverse derivatives including neurons and glia of the cranial ganglia, and cartilage and bone of the facial skeleton. Here, we explore the function of a novel transcription factor of the spalt family that might be involved in early cell-lineage decisions of the avian neural crest. The chicken spalt4 gene (csal4) is expressed in the neural tube, migr...
متن کاملN-cadherin acts in concert with Slit1-Robo2 signaling in regulating aggregation of placode-derived cranial sensory neurons.
Vertebrate cranial sensory ganglia have a dual origin from the neural crest and ectodermal placodes. In the largest of these, the trigeminal ganglion, Slit1-Robo2 signaling is essential for proper ganglion assembly. Here, we demonstrate a crucial role for the cell adhesion molecule N-cadherin and its interaction with Slit1-Robo2 during gangliogenesis in vivo. A common feature of chick trigemina...
متن کاملHuman Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro
Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 12 شماره
صفحات -
تاریخ انتشار 1991