Endogenous enkephalins, not endorphins, modulate basal hedonic state in mice.
نویسندگان
چکیده
The aversive response to naloxone administration observed in human and animal studies suggests the presence of an endogenous opioid tone regulating hedonic state but the class(es) of opioid peptides mediating such opioid hedonic tone is uncertain. We sought to address this question using mice deficient in either beta-endorphin or pro-enkephalin in a naloxone-conditioned place aversion paradigm. Mice received saline in the morning in one chamber and either saline or naloxone (0.1, 1 or 10 mg/kg, s.c.) in the afternoon in another chamber, each day for 3 days. On the test day they were given free access to the testing chambers in the afternoon and the time spent in each chamber was recorded. Whereas wild-type and beta-endorphin-deficient mice exhibited a robust conditioned place aversion to naloxone, pro-enkephalin knockout mice failed to show aversion to naloxone at any dose tested. In contrast, these mice showed a normal conditioned aversion to the kappa opioid receptor agonist, U50,488 (5 mg/kg), and to LiCl (100 mg/kg) indicating that these mice are capable of associative learning. In a separate experiment, pro-enkephalin knockout mice, similar to wild-type and beta-endorphin-deficient mice, demonstrated a significant conditioned place preference to morphine (2.5, 5 and 10 mg/kg s.c.). These data suggest that enkephalins, but not endorphins, may mediate an endogenous opioid component of basal affective state and also indicate that release of neither endogenous enkephalins nor endorphins is critical for the acquisition or expression of the association between contextual cues and the rewarding effect of exogenously administered opiates.
منابع مشابه
Enkephalins and endorphins: the endogenous opiates.
The discovery of the opiate receptors in the central nervous system of man and subsequent identification of endogenous opiate-like ligands (enkephalins and endorphins) has provided a model for the analgesia, euphoria and addiction produced by the narcotics. In this article, the author reviews the background, biosynthesis and degradation, distribution, nociceptive transmission and analgesic effe...
متن کاملRole of endogenous opioid systems in alcohol reinforcement and dependence mechanisms
Biochemical and behavioral evidence indicate that the dopaminergic mesolimbic system plays a key role in the mechanisms of reinforcement and reward elicited by alcohol (ethanol) and other drugs of abuse. In addition, the dopaminergic activity of the nigrostriatal pathway has been proposed to determine brain sensitivity to ethanol, a process which could be associated to drug addiction. Besides d...
متن کاملDrug Receptors and Biological Responses
A fundamental concept of pharmacology is that to initiate an effect in a cell, most drugs combine with some molecular structure on the surface of or within the cell. This molecular structure is called a receptor. The combination of the drug and the receptor results in a molecular change in the receptor, such as an altered configuration or charge distribution, and thereby triggers a chain of eve...
متن کاملHypothalamic mu-opioid receptors in cardiovascular control: a review.
The endogenous opioid system includes three major families of peptides [22]: dynorphins (derived from pre-proenkephalin B); endorphins (derived from pre-proopiomelanocortin) and enkephalins (derived from pre-proenkephalin A). Multiple species of opioid peptides are derived from these major precursors and many of them possess potent cardiovascular properties. Multiple forms of opioid receptors h...
متن کاملInteractions of the opioid and cannabinoid systems in reward: Insights from knockout studies
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2005