On Unipotent Flows in H(1, 1)

نویسنده

  • KEVIN WORTMAN
چکیده

We study the action of the horocycle flow on the moduli space of abelian differentials in genus two. In particular, we exhibit a classification of a specific class of probability measures that are invariant and ergodic under the horocycle flow on the stratum H(1, 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 v 1 [ m at h . D S ] 6 A ug 2 00 4 Unipotent flows on the space of branched covers of Veech surfaces

There is a natural action of SL(2, R) on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup U = 1 * 0 1. We classify the U-invariant ergodic measures on certain special submanifolds of the moduli space. (Each submanifold is the SL(2, R)-orbit of the set of branched covers of a fixed Veech surface.) For the U-action on these submanifolds, this is an ana...

متن کامل

Unipotent flows on the space of branched covers of Veech surfaces

There is a natural action of SL(2,R) on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup U = {( 1 ∗ 0 1 )} . We classify the U -invariant ergodic measures on certain special submanifolds of the moduli space. (Each submanifold is the SL(2,R)-orbit of the set of branched covers of a fixed Veech surface.) For the U -action on these submanifolds, this is...

متن کامل

m at h . D S ] 1 3 N ov 2 00 3 Ratner ’ s Theorem on Unipotent Flows

Unipotent flows are well-behaved dynamical systems. In particular, Marina Ratner has shown that the closure of every orbit for such a flow is of a nice algebraic (or geometric) form. After presenting some consequences of this important theorem, these lectures explain the main ideas of the proof. Some algebraic technicalities will be pushed to the background. Chapter 1 is the main part of the bo...

متن کامل

Ergodicity of Unipotent Flows and Kleinian Groups

Let M be a non-elementary convex cocompact hyperbolic 3-manifold and δ be the critical exponent of its fundamental group. We prove that a one-dimensional unipotent flow for the frame bundle of M is ergodic for the Burger-Roblin measure if and only if δ > 1.

متن کامل

Uniformly distributed orbits of certain flows on homogeneous spaces

Let G be a connected Lie group, F be a lattice in G and U = {ut},~R be a unipotent one-parameter subgroup of G, viz. Adu is a unipotent linear transformation for all u ~ U. Consider the flow induced by the action of U (on the left) on G/F. Such a flow is referred as a unipotent flow on the homogeneous space G/F. The study of orbits of unipotent flows has been the subject of several papers. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007