Algebraic Structures on Grothendieck Groups of a Tower of Algebras
نویسنده
چکیده
The Grothendieck group of the tower of symmetric group algebras has a self-dual graded Hopf algebra structure. Inspired by this, we introduce by way of axioms, a general notion of a tower of algebras and study two Grothendieck groups on this tower linked by a natural paring. Using representation theory, we show that our axioms give a structure of graded Hopf algebras on each Grothendieck groups and these structures are dual to each other. We give some examples to indicate why these axioms are necessary. We also give auxiliary results that are helpful to verify the axioms. We conclude with some remarks on generalized towers of algebras leading to a structure of generalized bialgebras (in the sense of Loday) on their Grothendieck groups.
منابع مشابه
Combinatorial Hopf Algebras and Towers of Algebras
Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras L n≥0 An can be endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap, and independently Lam and Shimozono constructed dual graded graphs from primitive elements in Hopf algebras. In this paper we apply the composition of these constructions to towers of al...
متن کاملGrothendieck Inclusion Systems
the date of receipt and acceptance should be inserted later Abstract Inclusion systems have been introduced in algebraic specification theory as a categorical structure supporting the development of a general abstract logic-independent approach to the algebra of specification (or programming) modules. Here we extend the concept of indexed categories and their Grothendieck flattenings to inclusi...
متن کاملSimilarity DH-Algebras
In cite{GL}, B. Gerla and I. Leuc{s}tean introduced the notion of similarity on MV-algebra. A similarity MV-algebra is an MV-algebra endowed with a binary operation $S$ that verifies certain additional properties. Also, Chirtec{s} in cite{C}, study the notion of similarity on L ukasiewicz-Moisil algebras. In particular, strong similarity L ukasiewicz-Moisil algebras were defined. In this paper...
متن کاملCategorification and Heisenberg doubles arising from towers of algebras
The Grothendieck groups of the categories of finitely generated modules and finitely generated projective modules over a tower of algebras can be endowed with (co)algebra structures that, in many cases of interest, give rise to a dual pair of Hopf algebras. Moreover, given a dual pair of Hopf algebras, one can construct an algebra called the Heisenberg double, which is a generalization of the c...
متن کاملBirkhoff's Theorem from a geometric perspective: A simple example
From Hilbert's theorem of zeroes, and from Noether's ideal theory, Birkhoff derived certain algebraic concepts (as explained by Tholen) that have a dual significance in general toposes, similar to their role in the original examples of algebraic geometry. I will describe a simple example that illustrates some of the aspects of this relationship. The dualization from algebra to geometr...
متن کامل