Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass
نویسندگان
چکیده
We investigate TMMF photopolymer as a cost-efficient alternative to glass for the leak-tight sealing of high-density silicon microchannels. TMMF enables low temperature sealing and access to structures underneath via lamination and standard UV-lithography instead of costly glass machining and anodic bonding. TMMF is highly transparent and has a low autofluorescence for wavelengths larger than 400 nm. As the photopolymer is too thin for implementing bulky world-to-chip interfaces, we propose adhesive bonding of cyclic olefin copolymer (COC) modules. All materials were tested according ISO 10993-5 and showed no cytotoxic effects on the proliferation of L929 cells. To quantify the cost efficiency of the proposed techniques, we used an established silicon/Pyrex nanoliter dispenser as a reference and replaced structured Pyrex wafers by TMMF laminates and COC modules. Thus, consumable costs, manpower and machine time related to sealing of the microchannels and implementing the world-to-chip interface could be significantly reduced. Leak tightness was proved by applying a pressure of 0.2 MPa for 5 h without delamination or crosstalk between neighboring microchannels located only 100 μm apart. In contrast to anodic bonding, the proposed techniques are tolerant to surface inhomogeneities. They enable manufacturing of silicon/polymer microfluidics at lower costs and without compromising the performance compared to corresponding silicon/glass devices. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Excimer laser fabrication of polymer microfluidic devices
Silicon has been a primary material for fabrication of microelectromechanical systems ~microfluidic devices in MEMS! for several decades. This is due to the fact that the MEMS techniques were derived from those used for microfabrication in the semiconductor industry. These techniques are well developed, and can be readily applied for silicon based MEMS fabrication. Nowadays, alternative manufac...
متن کاملDevelopment and Application of Integrated Silicon-in-plastic Microfabrication in Polymer Microfluidic Systems
Title of Document: DEVELOPMENT AND APPLICATION OF INTEGRATED SILICON-IN-PLASTIC MICROFABRICATION IN POLYMER MICROFLUIDIC SYSTEMS Likun Zhu, Doctor of Philosophy, 2006 Directed By: Associate Professor Don L. DeVoe, Department of Mechanical Engineering Polymer-based microfluidic devices can offer a number of advantages over conventional devices, and have found many applications in chemical and bi...
متن کاملAn All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay
A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microflu...
متن کاملFinite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites
The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring ele...
متن کاملNano-sized Amitriptyline (AT) imprinted polymer particles: Synthesis and characterization in Silicon oil
Amitriptyline hydrochloride is a highly permeable active pharmaceutical ingredient (API). The function of these drugs is to block the reuptake of the neurotransmitters, norepinephrine and serotonin in the central nervous system. The nano-sized Amitriptyline (AT) imprinted polymer particles were synthesized successfully. The nanoparticles were characterized by Fourier transform infrared spectros...
متن کامل