Dysbindin Promotes the Post-Endocytic Sorting of G Protein-Coupled Receptors to Lysosomes
نویسندگان
چکیده
BACKGROUND Dysbindin, a cytoplasmic protein long known to function in the biogenesis of specialized lysosome-related organelles (LROs), has been reported to reduce surface expression of D2 dopamine receptors in neurons. Dysbindin is broadly expressed, and dopamine receptors are members of the large family of G protein-coupled receptors (GPCRs) that function in diverse cell types. Thus we asked if dysbindin regulates receptor number in non-neural cells, and further investigated the cellular basis of this regulation. METHODOLOGY/PRINCIPAL FINDINGS We used RNA interference to deplete endogenous dysbindin in HEK293 and HeLa cells, then used immunochemical and biochemical methods to assess expression and endocytic trafficking of epitope-tagged GPCRs. Dysbindin knockdown up-regulated surface expression of D2 receptors compared to D1 receptors, as reported previously in neurons. This regulation was not mediated by a change in D2 receptor endocytosis. Instead, dysbindin knockdown specifically reduced the subsequent trafficking of internalized D2 receptors to lysosomes. This distinct post-endocytic sorting function explained the minimal effect of dysbindin depletion on D1 receptors, which recycle efficiently and traverse the lysosomal pathway to only a small degree. Moreover, dysbindin regulated the delta opioid receptor, a more distantly related GPCR that is also sorted to lysosomes after endocytosis. Dysbindin was not required for lysosomal trafficking of all signaling receptors, however, as its depletion did not detectably affect down-regulation of the EGF receptor tyrosine kinase. Dysbindin co-immunoprecipitated with GASP-1 (or GPRASP-1), a cytoplasmic protein shown previously to modulate lysosomal trafficking of D2 dopamine and delta opioid receptors by direct interaction, and with HRS that is a core component of the conserved ESCRT machinery mediating lysosome biogenesis and sorting. CONCLUSIONS/SIGNIFICANCE These results identify a distinct, and potentially widespread function of dysbindin in promoting the sorting of specific GPCRs to lysosomes after endocytosis.
منابع مشابه
Gαs regulates the post-endocytic sorting of G protein-coupled receptors
The role of Gαs in G protein-coupled receptor (GPCR) signalling at the cell surface is well established. Recent evidence has revealed the presence of Gαs on endosomes and its capacity to elicit GPCR-promoted signalling from this intracellular compartment. Here, we report an unconventional role for Gαs in the endocytic sorting of GPCRs to lysosomes. Cellular depletion of Gαs specifically delays ...
متن کاملRole of mammalian vacuolar protein-sorting proteins in endocytic trafficking of a non-ubiquitinated G protein-coupled receptor to lysosomes.
Many signaling receptors require covalent modification by ubiquitin for agonist-induced down-regulation via endocytic trafficking to lysosomes, a process that is mediated by a conserved set of endosome-associating proteins also required for vacuolar protein-sorting (VPS) in yeast. The delta opioid receptor (DOR) is a G protein-coupled receptor that can undergo agonist-induced proteolysis via en...
متن کاملA kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor.
A fundamental question in cell biology is how membrane proteins are sorted in the endocytic pathway. The sorting of internalized beta2-adrenergic receptors between recycling endosomes and lysosomes is responsible for opposite effects on signal transduction and is regulated by physiological stimuli. Here we describe a mechanism that controls this sorting operation, which is mediated by a family ...
متن کاملDistinct Dynamin-dependent and -independent Mechanisms Target Structurally Homologous Dopamine Receptors to Different Endocytic Membranes
D1 and D2 dopamine receptors are structurally homologous G protein-coupled receptors that serve distinct physiological functions both in neurons and nonneural cell types. We have observed that these receptors are selectively endocytosed in HEK293 cells by distinct dynamin-dependent and -independent mechanisms. Although these endocytic mechanisms operate with similarly rapid kinetics, they diffe...
متن کاملAlternative splicing determines the post-endocytic sorting fate of G-protein-coupled receptors.
Mu-type opioid receptors are physiologically important G-protein-coupled receptors that are generally thought to recycle after agonist-induced endocytosis. Here we show that several alternatively spliced receptor variants fail to do so efficiently because of splice-mediated removal of an endocytic sorting sequence that is present specifically in the MOR1 variant. All of the recycling-impaired r...
متن کامل