Defect-free nanoporous thin films from ABC triblock copolymers.
نویسندگان
چکیده
The self-assembly of triblock copolymers of poly(ethylene oxide-b-methyl methacrylate-b-styrene) (PEO-b-PMMA-b-PS), where PS is the major component and PMMA and PEO are minor components, provides a robust route to highly ordered, nanoporous arrays with cylindrical pores of 10-15 nm that show promise in block copolymer lithography. These ABC triblock copolymers were synthesized by controlled living radical polymerization, and after solvent annealing, thin films showing defect-free cylindrical microdomains were obtained. The key to the successful generation of highly regular, porous thin films is the use of PMMA as a photodegradable mid-block which leads to nanoporous structures with an unprecedented degree of lateral order. The power of using a triblock copolymer when compared to a traditional diblock copolymer is evidenced by the ability to exploit and combine the advantages of two separate diblock copolymer systems, the high degree of lateral ordering inherent in PS-b-PEO diblocks plus the facile degradability of PS-b-PMMA diblock copolymer systems, while negating the corresponding disadvantages, poor degradability in PS-b-PEO systems and no long-range order for PS-b-PMMA diblocks.
منابع مشابه
Towards nanoporous membranes based on ABC triblock terpolymers.
Block copolymers represent an exciting class of complex materials as they self-assemble into highly regular structures of nanoscopic dimensions. When prepared as thin films, such structures can be used for a variety of applications including lithographic masks or nanoporous membranes. Reported here are nanostructures in thin films of structurally analogous polybutadiene-block-poly(2-vinyl pyrid...
متن کاملCharacterization of nanoporous ultra low-k thin films templated by copolymers with different architectures
Triblock, diblock and random copolymers of poly(ethylene oxide) and poly(propylene oxide) are used as molecular templates in poly(methyl silsesquioxane) (MSQ) matrices to fabricate ultra low-k dielectric materials (kp2:0). Solidstate NMR shows that polymer architecture plays an important role in the polymer domain size and the polymer– matrix interface in the nanocomposites. Positronium annihil...
متن کاملSquare Packing and Structural Arrangement of ABC Triblock Copolymer Spheres in Thin Films
Nanoporous thin films were prepared from poly(ethylene oxide)-b-poly(methyl methacrylate)-bpolystyrene (PEO-b-PMMA-b-PS) ABC triblock copolymer by solvent annealing under high relative humidity followed by UV degradation and acid washing. Ordered half-spheres at the surface that template ordering of spheres below the surface in thin films were formed as a result of the interaction between the h...
متن کاملFabrication of Highly Ordered Polymeric Nanodot and Nanowire Arrays Templated by Supramolecular Assembly Block Copolymer Nanoporous Thin Films
Realizing the vast technological potential of patternable block copolymers requires both the precise controlling of the orientation and long-range ordering, which is still a challenging topic so far. Recently, we have demonstrated that ordered nanoporous thin film can be fabricated from a simple supramolecular assembly approach. Here we will extend this approach and provide a general route to f...
متن کاملSelf-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: self-consistent field theory simulations.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 23 شماره
صفحات -
تاریخ انتشار 2006