Towards A Mirror Principle For Higher Genus

نویسندگان

  • Bong LIAN
  • Kefeng LIU
  • Shing-Tung YAU
چکیده

Mirror principle is a general method developed in [LLY1]-[LLY4] to compute characteristic classes and characteristic numbers on moduli spaces of stable maps in terms of hypergeometric type series. The counting of the numbers of curves in Calabi-Yau manifolds from mirror symmetry corresponds to the computation of Euler numbers. This principle computes quite general Hirzebruch multiplicative classes such as the total Chern classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 99 12 03 8 v 1 [ m at h . A G ] 6 D ec 1 99 9 Mirror Principle III

We generalize the theorems in Mirror Principle I and II to the case of general projective manifolds without the convexity assumption. We also apply the results to balloon manifolds, and generalize to higher genus.

متن کامل

Local Mirror Symmetry at Higher Genus

We discuss local mirror symmetry for higher-genus curves. Specifically, we consider the topological string partition function from higher genus curves contained in a Fano surface within a Calabi-Yau. Our main example is the local P case. The Kodaira-Spencer theory of gravity, tailored to this local geometry, can be solved to compute this partition function. Then, using the results of Gopakumar ...

متن کامل

Holomorphic Anomaly Equation and BPS State Counting of Rational Elliptic Surface

We consider the generating function (prepotential) for Gromov-Witten invariants of rational elliptic surface. We apply the local mirror principle to calculate the prepotential and prove a certain recursion relation, holomorphic anomaly equation, for genus 0 and 1. We propose the homomorphic anomaly equation for all genera and apply it to determine higher genus Gromov-Witten invariants and also ...

متن کامل

Anomaly Equation and BPS State Counting of Rational Elliptic Surface

We consider the generating function (prepotential) for Gromov-Witten invariants of rational elliptic surface. We apply the local mirror principle to calculate the prepotential and prove a certain recursion relation, holomorphic anomaly equation, for genus 0 and 1. We propose the homomorphic anomaly equation for all genera and apply it to determine higher genus Gromov-Witten invariants and also ...

متن کامل

Mirror Transform and String Theory

Some aspects of Mirror symmetry are reviewed, with an emphasis on more recent results extending mirror transform to higher genus Riemann surfaces and its relation to the Kodaira-Spencer theory of gravity 1 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001