Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations.
نویسندگان
چکیده
The breadth of genetic and phenotypic variation among inbred strains is often underappreciated because assessments include only a limited number of strains. Evaluation of a larger collection of inbred strains provides not only a greater understanding of this variation but collectively mimics much of the variation observed in human populations. We used a high-throughput phenotyping protocol to measure females and males of 43 inbred strains for body composition (weight, fat, lean tissue mass, and bone mineral density), plasma triglycerides, high-density lipoprotein and total cholesterol, glucose, insulin, and leptin levels while mice consumed a high-fat, high-cholesterol diet. Mice were fed a chow diet until they were 6-8 wk old and then fed the high-fat diet for an additional 18 wk. As expected, broad phenotypic diversity was observed among these strains. Significant variation between the sexes was also observed for most traits measured. Additionally, the response to the high-fat diet differed considerably among many strains. By the testing of such a large set of inbred strains for many traits, multiple phenotypes can be considered simultaneously and thereby aid in the selection of certain inbred strains as models for complex human diseases. These data are publicly available in the web-accessible Mouse Phenome Database (http://www.jax.org/phenome), an effort established to promote systematic characterization of biochemical and behavioral phenotypes of commonly used and genetically diverse inbred mouse strains. Data generated by this effort builds on the value of inbred mouse strains as a powerful tool for biomedical research.
منابع مشابه
Genetic analysis in the Collaborative Cross breeding population.
Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such popu...
متن کاملUse of a Dense Single Nucleotide Polymorphism Map for In Silico Mapping in the Mouse
Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In...
متن کاملMOUSE GENETIC RESOURCES High-Resolution Genetic Mapping Using the Mouse Diversity Outbred Population
The JAX Diversity Outbred population is a new mouse resource derived from partially inbred Collaborative Cross strains and maintained by randomized outcrossing. As such, it segregates the same allelic variants as the Collaborative Cross but embeds these in a distinct population architecture in which each animal has a high degree of heterozygosity and carries a unique combination of alleles. Phe...
متن کاملMouse Phenome Project: understanding human biology through mouse genetics and genomics.
THE HUMAN GENOME PROJECT IS generating vast amounts of new information at breakneck speed and causing a fundamental shift in disease research. Now with the availability of a nearly complete, high-accuracy sequence of the mouse genome (7), a new and powerful paradigm for biomedical research is established. The remarkable similarity of mouse and human genomes, in both synteny and sequence, uncond...
متن کاملHigh-resolution genetic mapping using the Mouse Diversity outbred population.
The JAX Diversity Outbred population is a new mouse resource derived from partially inbred Collaborative Cross strains and maintained by randomized outcrossing. As such, it segregates the same allelic variants as the Collaborative Cross but embeds these in a distinct population architecture in which each animal has a high degree of heterozygosity and carries a unique combination of alleles. Phe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 102 6 شماره
صفحات -
تاریخ انتشار 2007