Engineered regulation of lysozyme by the SH3-CB1 binding interaction.

نویسندگان

  • Elizabeth Pham
  • Kevin Truong
چکیده

The ability to design proteins with desired properties by using protein structural information will allow us to create high-value therapeutic and diagnostic products. Using the protein structures of lambda lysozyme and the SH3 domain of human Crk, we designed a synthetic protein switch that controls the activity of lysozyme by sterically hindering its active cleft through the binding of SH3 to its CB1 peptide-binding partner. First, several fusion protein designs with lysozyme and CB1 were modeled to determine the one with greatest steric effect in the presence of SH3. Next, the selected fusion protein was created and tested in vitro. In the absence of SH3, the lysozyme-CB1 fusion protein functioned normally. In the presence of SH3, the lysozyme activity was inhibited and with the addition of excess CB1 peptides to compete for SH3 binding, the lysozyme activity was restored. Lastly, this structure-based strategy can be used to engineer synthetic regulation by peptide-domain-binding interfaces into a variety of proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study the Interaction of Ni Complex of Tetradentate Schiff Base Ligand with HEN Egg White Lysozyme

AbstractInteraction of Ni complex(Salen= N, N´-ethylene bis(salicylideneimine)) with hen egg-white lysozyme (HEWL) was studied by absorption spectroscopy, competitive binding study and thermal denaturation study. The protein binding affinity of Ni complex was found to be (3.0×103M−1). The binding plot obtained from the absorption titration data gives a binding constant of 2.4 (± 0.3)×103 M...

متن کامل

Refolding of Lysozyme Upon Interaction with ?-Cyclodextrin

Effects of ?-cyclodextrin, ?CD, on refolding of lysozyme was investigated at pH 12 employing isothermal titration calorimetry (ITC) at 300K in 30mM Tris buffer solution. ?CD was employed as an anti-aggregation agent and the heats obtained for lysozyme+?CD interactions are reported and analyzed in terms of the extended solvation model. It was indicated that there are two sets of identical and no...

متن کامل

Spectroscopic Studies on the Interaction of Nano-TiO2 with Lysozyme

In the present study, the interaction between nano-TiO2 and lysozyme was investigated by the method of UV-Vis detection and fluorescence spectroscopic techniques. The thermal denaturation of lysozyme has been investigated in the presence and absence of nano-TiO2 over the temperature range (293-373) K in different buffer and pH, using temperature scanning spectrosc...

متن کامل

Regulation of ASPP2 Interaction with p53 Core Domain by an Intramolecular Autoinhibitory Mechanism

ASPP2 is a key protein in regulating apoptosis both in p53-dependent and-independent pathways. The C-terminal part of ASPP2 contains four ankyrin repeats and an SH3 domain (Ank-SH3) that mediate the interactions of ASPP2 with apoptosis related proteins such as p53, Bcl-2 and the p65 subunit of NFκB. p53 core domain (p53CD) binds the n-src loop and the RT loop of ASPP2 SH3. ASPP2 contains a diso...

متن کامل

Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation.

Many cellular signaling proteins contain SH3 (Src homology 3) domains that mediate protein interactions via specific proline-containing peptides. Unlike SH2 domains, whose interactions with tyrosine-containing peptides are promoted by phosphorylation of the SH2 binding site, the regulatory mechanism for SH3 interactions is unclear. p120 RasGAP (GTPase-activating protein), which contains an SH3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering, design & selection : PEDS

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 2012