Ela Matrix Functions Preserving Sets of Generalized Nonnegative Matrices
نویسندگان
چکیده
Matrix functions preserving several sets of generalized nonnegative matrices are characterized. These sets include PFn, the set of n×n real eventually positive matrices; and WPFn, the set of matrices A ∈ R such that A and its transpose have the Perron-Frobenius property. Necessary conditions and sufficient conditions for a matrix function to preserve the set of n× n real eventually nonnegative matrices and the set of n × n real exponentially nonnegative matrices are also presented. In particular, it is shown that if f(0) 6= 0 and f (0) 6= 0 for some entire function f , then such an entire function does not preserve the set of n×n real eventually nonnegative matrices. It is also shown that the only complex polynomials that preserve the set of n × n real exponentially nonnegative matrices are p(z) = az + b, where a, b ∈ R and a ≥ 0.
منابع مشابه
Ela Matrix Functions Preserving Sets
Matrix functions preserving several sets of generalized nonnegative matrices are characterized. These sets include PFn, the set of n×n real eventually positive matrices; and WPFn, the set of matrices A ∈ R such that A and its transpose have the Perron-Frobenius property. Necessary conditions and sufficient conditions for a matrix function to preserve the set of n× n real eventually nonnegative ...
متن کاملMatrix functions preserving sets of generalized nonnegative matrices
Matrix functions preserving several sets of generalized nonnegative matrices are characterized. These sets include PFn, the set of n×n real eventually positive matrices; and WPFn, the set of matrices A ∈ R such that A and its transpose have the Perron-Frobenius property. Necessary conditions and sufficient conditions for a matrix function to preserve the set of n× n real eventually nonnegative ...
متن کاملEla on General Matrices Having the Perron-frobenius Property∗
A matrix is said to have the Perron-Frobenius property if its spectral radius is an eigenvalue with a corresponding nonnegative eigenvector. Matrices having this and similar properties are studied in this paper as generalizations of nonnegative matrices. Sets consisting of such generalized nonnegative matrices are studied and certain topological aspects such as connectedness and closure are pro...
متن کاملLinear Functions Preserving Sut-Majorization on RN
Suppose $textbf{M}_{n}$ is the vector space of all $n$-by-$n$ real matrices, and let $mathbb{R}^{n}$ be the set of all $n$-by-$1$ real vectors. A matrix $Rin textbf{M}_{n}$ is said to be $textit{row substochastic}$ if it has nonnegative entries and each row sum is at most $1$. For $x$, $y in mathbb{R}^{n}$, it is said that $x$ is $textit{sut-majorized}$ by $y$ (denoted by $ xprec_{sut} y$) if t...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کامل