A holistic approach to carbon-enhanced metal-poor stars
نویسندگان
چکیده
Context. Carbon-Enhanced Metal-Poor (CEMP) stars are known to be the direct witnesses of the nucleosynthesis of the first lowand intermediate-mass stars, because most have been polluted by a now-extinct AGB star. Aims. By considering the various CEMP subclasses separately, we try to derive, from the specific signatures imprinted on the abundances, parameters (such as metallicity, mass, temperature, and neutron source) characterizing AGB nucleosynthesis from the specific signatures imprinted on the abundances, and separate them from the impact of thermohaline mixing, first dredge-up, and dilution associated with the mass transfer from the companion. Methods. To put CEMP stars in a broad context, we collect abundances for about 180 stars of various metallicities (from solar down to [Fe/H]=-4), luminosity classes (dwarfs and giants), and abundance patterns (C-rich and poor, Ba-rich and poor, etc), from our own sample and from literature. Results. First, we show that there are CEMP stars which share the properties of CEMP-s stars and CEMP-no stars (which we call CEMP-low-s stars). We also show that there is a strong correlation between Ba and C abundances in the s-only CEMP stars. This strongly points at the operation of the 13C neutron source in low-mass AGB stars. For the CEMP-rs stars (seemingly enriched with elements from both the sand r-processes), the correlation of the N abundances with abundances of heavy elements from the 2nd and 3rd s-process peaks bears instead the signature of the 22Ne neutron source. Adding the fact that CEMP-rs stars exhibit O and Mg enhancements, we conclude that extremely hot conditions prevailed during the thermal pulses of the contaminating AGB stars. We also note that abundances are not affected by the evolution of the CEMP-rs star itself (especially by the first dredge-up). This implies that mixing must have occurred while the star was on the main sequence and that a large amount of matter must have been accreted so as to trigger thermohaline mixing. Finally, we argue that most CEMP-no stars (with no overabundances for the neutron-capture elements) are likely the extremely metal-poor counterparts of CEMP neutron-capture-rich stars. We also show that the C enhancement in CEMP-no stars declines with metallicity at extremely low metallicity ([Fe/H] < −3.2). This trend is not predicted by any of the current AGB models.
منابع مشابه
Binary Populations of Carbon-Enhanced Metal-Poor Stars
We construct binary-star population nucleosynthesis models of carbon-enhanced metal poor (CEMP) stars. We compare the CEMP to EMP (extremely metal poor) ratio of our models to the observed ratio and find it is an order of magnitude too small. Through an increase in the efficiency of third dredge-up in low-mass, low-metallicity thermally-pulsing asymptotic-giant branch (TPAGB) stars our models b...
متن کاملA Search for Nitrogen-enhanced Metal-poor Stars1
Theoretical models of very metal-poor intermediate-mass Asymptotic Giant Branch (AGB) stars predict a large overabundance of primary nitrogen. The very metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the polluted companions of now-extinct AGB stars, provide direct tests of the predictions of these models. Recent studies of the carbon and nitrogen abundances in metal-p...
متن کاملA carbon-enhanced metal-poor damped Lyα system: probing gas from Population III nucleosynthesis?
We present high-resolution observations of an extremely metal-poor damped Lyα system (DLA), at zabs = 2.340 0972 in the spectrum of the QSO J0035−0918, exhibiting an abundance pattern consistent with model predictions for the supernova yields of Population III stars. Specifically, this DLA has [Fe/H] −3, shows a clear ‘odd–even’ effect, and is C-rich with [C/Fe] = +1.53, a factor of ∼20 greater...
متن کاملCarbon-enhanced metal-poor stars: the most pristine objects?
Context. Carbon-enhanced metal poor stars (CEMP) form a significant proportion of the metal-poor stars, their origin is not well understood, and this carbon-enhancement appears in stars that exhibit different abundance patterns. Aims. Three very metal-poor C-rich turnoff stars were selected from the SDSS survey, observed with the ESO VLT (UVES) to precisely determine the element abundances. In ...
متن کاملOn the binarity of carbon-enhanced, metal-poor stars
We report on a programme to monitor the radial velocities of a sample of candidate and confirmed carbon-enhanced, metal-poor (CEMP) stars. We observed 45 targets using the Echelle Spectrographs of three 4-m class telescopes. Radial velocities for these objects were calculated by cross-correlation of their spectra with the spectrum of HD 140283, and have errors < 1 km s−1. Sixteen of our program...
متن کامل