Molecular insight on the binding of NNRTI to K103N mutated HIV-1 RT: molecular dynamics simulations and dynamic pharmacophore analysis.

نویسندگان

  • Bilal Nizami
  • Dominique Sydow
  • Gerhard Wolber
  • Bahareh Honarparvar
چکیده

Regardless of advances in anti-HIV therapy, HIV infection remains an immense challenge due to the rapid onset of mutation instigating drug resistance. Rilpivirine is a second generation di-aryl pyrimidine (DAPY) derivative, known to effectively inhibit wild-type (WT) as well as various mutant HIV-1 reverse transcriptase (RT). In this study, a cumulative 240 ns of molecular dynamic (MD) simulations of WT HIV-1 RT and its corresponding K103N mutated form, complexed with rilpivirine, were performed in solution. Conformational analysis of the NNRTI inside the binding pocket (NNIBP) revealed the ability of rilpivirine to adopt different conformations, which is possibly the reason for its reasonable activity against mutant HIV-1 RT. Binding free energy (MM-PB/GB SA) calculations of rilpivirine with mutant HIV-1 RT are in agreement with experimental data. The dynamics of interaction patterns were investigated based on the MD simulations using dynophores, a novel approach for MD-based ligand-target interaction mapping. The results from this interaction profile analysis suggest an alternate interaction between the linker N atom of rilpivirine and Lys 101, potentially providing the stability for ligand binding. PCA analysis and per residue fluctuation has highlighted the significant role of flexible thumb and finger sub-domains of RT in its biological activity. This study investigated the underlying reason for rilpivirine's improved inhibitory profile against mutant RT, which could be helpful to understand the molecular basis of HIV-1 RT drug resistance and design novel NNRTIs with improved drug resistance tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of allosteric inhibition of HIV-1 reverse transcriptase revealed by single-molecule and ensemble fluorescence

Non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are routinely used to treat HIV-1 infection, yet their mechanism of action remains unclear despite intensive investigation. In this study, we developed complementary single-molecule fluorescence and ensemble fluorescence anisotropy approaches to discover how NNRTIs modulate the intra-molecular conformational changes and inter-molecul...

متن کامل

Effect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase.

HIV-1 reverse transcriptase (RT) is an important target for drugs used in the treatment of AIDS. Drugs known as non-nucleoside RT inhibitors (NNRTI) appear to alter the structural and dynamical properties of RT which in turn inhibit RT's ability to transcribe. Molecular dynamics (MD), principal component analysis (PCA), and binding free energy simulations are employed to explore the dynamics of...

متن کامل

Molecular dynamics simulations and docking of non-nucleoside reverse transcriptase inhibitors (NNRTIs): a possible approach to personalized HIV treatment

The human immunodeficiency virus (HIV) is currently ranked sixth in the worldwide causes of death [1]. One treatment approach is to inhibit reverse transcriptase (RT), an enzyme essential for reverse transcription of viral RNA into DNA before integration into the host genome [2]. By using non-nucleoside RT inhibitors (NNRTIs) [3], which target an allosteric binding site, major side effects can ...

متن کامل

Global Conformational Dynamics of HIV-1 Reverse Transcriptase Bound to Non-Nucleoside Inhibitors

HIV-1 Reverse Transcriptase (RT) is a multifunctional enzyme responsible for the transcription of the RNA genome of the HIV virus into DNA suitable for incorporation within the DNA of human host cells. Its crucial role in the viral life cycle has made it one of the major targets for antiretroviral drug therapy. The Non-Nucleoside RT Inhibitor (NNRTI) class of drugs binds allosterically to the e...

متن کامل

Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular bioSystems

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2016