Lattice Paths and the Flagged Cauchy Determinant

نویسندگان

  • William Y. C. Chen
  • Arthur L. B. Yang
چکیده

We obtain a flagged form of the Cauchy determinant and establish a correspondence between this determinant and nonintersecting lattice paths, from which it follows that Cauchy identity on Schur functions. By choosing different origins and destinations for the lattice paths, we are led to an identity of Gessel on the Cauchy sum of Schur functions in terms of the complete symmetric functions in the full variable sets. The algebraic proof of this equivalence involves the Cauchy-Binet formula and mutli-Schur functions based on the complete super symmetric function. We also present an evaluation of the Cauchy determinant by the Jacobi symmetrizer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Flagged Cauchy Determinant

We consider a flagged form of the Cauchy determinant, for which we provide a combinatorial interpretation in terms of nonintersecting lattice paths. In combination with the standard determinant for the enumeration of nonintersecting lattice paths, we are able to give a new proof of the Cauchy identity for Schur functions. Moreover, by choosing different starting and end points for the lattice p...

متن کامل

Remarks on completeness of lattice-valued Cauchy spaces

We study different completeness definitions for two categories of lattice-valued Cauchy spaces and the relations between these definitions. We also show the equivalence of a so-called completion axiom and the existence of a completion.

متن کامل

Hirota bilinear identity and integrable q - difference and lattice hierarchies

Hirota bilinear identity for Cauchy-Baker-Akhieser (CBA) kernel is introduced as a basic tool to construct integrable hierarchies containing lattice and q-difference times. Determinant formula for the action of meromorphic function on CBA kernel is derived. This formula gives opportunity to construct generic solutions for integrable lattice equations.

متن کامل

Completeness results for metrized rings and lattices

The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...

متن کامل

Viewing Determinants as Nonintersecting Lattice Paths yields Classical Determinantal Identities Bijectively

In this paper, we show how general determinants may be viewed as generating functions of nonintersecting lattice paths, using the Lindström–Gessel–Viennotmethod and the Jacobi-Trudi identity together with elementary observations. After some preparations, this point of view provides “graphical proofs” for classical determinantal identities like the Cauchy-Binet formula, Dodgson’s condensation fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003