Parallel finite element computation of free - surface flows

نویسندگان

  • I. Güler
  • M. Behr
چکیده

In this paper we present parallel 2D and 3D finite element computation of unsteady, incompressible free-surface flows. The computations are based on the DeformableSpatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation, which takes automatically into account the motion of the free surface. The free-surface height is governed by a kinematic free-surface condition, which is also solved with a stabilized formulation. The meshes consist of triangles in 2D and triangular-based prism elements in 3D. The mesh update is achieved with general or special-purpose mesh moving schemes. As examples, 2D flow past spillway of a dam and 3D flow past a surfacepiercing circular cylinder are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Stabilized Finite Element Simulation of Free Surface Flows with Violent Motions

Abstract. Flows with violent free-surface motions occur in several problems in hydrodynamics, such as fuel or water sloshing in tanks, waves breaking in ships, offshore platforms, harbors and coastal areas. The computation of such highly nonlinear flows is challenging since free-surfaces commonly present merging, fragmentation and breaking parts, leading to the use of interface capturing Euleri...

متن کامل

Stabilized Space-Time Finite Element Formulations for Free-Surface Flows

Aspects of a method for 3D finite element computation of unsteady, incompressible freesurface flow are presented. The approach is based on the Deformable-Spatial-Domain/ Stabilized Space-Time (DSD/SST) finite element formulation, which takes automatically into account the deformation of the elements in response to the motion of the free surface. The free-surface elevation is governed by a kinem...

متن کامل

COMPUTATION OF UNSTEADY INCOMPRESSIBLE FLOWS WITH THE STABILIZED FINITE ELEMENT METHODS: SPACE-TIME FORMULATIONS, ITERATIVE STRATEGIES AND MASSIVELY PARALLEL IMPLEMENTATIONSt

We discuss the stabilized finite element computation of unsteady incompressible flows, with emphasis on the space-time formulations, iterative solution techniques and implementations on the massively parallel architectures such as the Connection Machines. The stabilization technique employed in this paper is the Galerkinjleast-squares (GLS) method. The Deformable-Spatial-DomainjStabilized-Space...

متن کامل

Comparison of Binomial and Power Equations in Radial Non-Darcy Flows in Coarse Porous Media

Analysis of non-laminar flows in coarse alluvial beds has a wide range of applications in various civil engineering, oil and gas, and geology problems. Darcy equation is not valid to analyze transient and turbulent flows, so non-linear equations should be applied. Non-linear equations are classified into power and binomial equations. Binomial equation is more accurate in a wide range of velocit...

متن کامل

Fast Finite Element Method Using Multi-Step Mesh Process

This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999