p53 is an important factor for the radiosensitization effect of 2-deoxy-D-glucose.

نویسندگان

  • Chompunoot Sinthupibulyakit
  • Kristopher R Grimes
  • Frederick E Domann
  • Yong Xu
  • Fang Fang
  • Wanida Ittarat
  • Daret K St Clair
  • William St Clair
چکیده

Metabolic change in cancer cells by preferential production of energy through glycolysis is a well-documented characteristic of cancer. However, whether inhibition of glycolysis will enhance the efficacy of radiation therapy is a matter of debate. In this study which uses lung cancer as the model, we demonstrate that the improvement of radiotherapy by 2-deoxy-D-glucose (2DG) is p53-dependent. Based on clonogenic survival data, we show that p53-deficient lung cancer cells (H358) are more sensitive to 2DG treatment when compared to p53 wild-type lung cancer cells (A549). The effective doses of 2DG at 0.5-surviving fraction of A549 and H358 are 17.25 and 4.61 mM, respectively. Importantly, 2DG exhibits a significant radiosensitization effect in A549 cells but not in H358 cells. Treatment with 2DG increases radiation-induced p53 protein levels in A549 cells. siRNA inhibition of p53 in A549 cells reduces the radiosensitization effect of 2DG. Furthermore, ectopic expression of wild-type p53 in H358 cells significantly enhances the radiosensitization effect of 2DG as determined by colony formation assay. In nude mice injected with A549 cells, treatment of 2DG enhances the efficacy of radiation therapy. Together, these results suggest that inhibition of glycolysis may only be beneficial for radiation therapy of cancer expressing wild-type p53.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined 2-deoxy glucose and metformin improves therapeutic efficacy of sodium-iodide symporter-mediated targeted radioiodine therapy in breast cancer cells

Radiosensitization using either metformin or 2-deoxy-d-glucose (2-DG) in various cancer cells has been reported. The present study reveals novel information on combining these drugs to enhance radiosensitization effect in breast cancer (BC) cells. Responses to low-dose Cobalt60 radiation, as well as a newly emerged radioiodine therapy target for BC, that is, sodium-iodide symporter (NIS or SLC5...

متن کامل

Synthesis, Quality Control and Stability Studies of 2-[18F]Fluoro-2-Deoxy-D-Glucose(18F-FDG) at Different Conditions of Temperature by Physicochemical and Microbiological Assays

The introduction of 2-[18F] fluor-2-deoxy-D-glucose (18FDG) has provided a valuable tool for the study of glucose metabolism in both normal and diseased tissue in conjunction with positron emission tomography (PET). 18FDG is the most important radiopharmaceutical to be used in Nuclear Medicine for studying the brain, heart and tumor. The advancement in synthesis and quality control of 18FDG and...

متن کامل

Synthesis, Quality Control and Stability Studies of 2-[18F]Fluoro-2-Deoxy-D-Glucose(18F-FDG) at Different Conditions of Temperature by Physicochemical and Microbiological Assays

The introduction of 2-[18F] fluor-2-deoxy-D-glucose (18FDG) has provided a valuable tool for the study of glucose metabolism in both normal and diseased tissue in conjunction with positron emission tomography (PET). 18FDG is the most important radiopharmaceutical to be used in Nuclear Medicine for studying the brain, heart and tumor. The advancement in synthesis and quality control of 18FDG and...

متن کامل

Induction of Apoptosis by a Combination of 2-Deoxyglucose and Metformin in Esophageal Squamous Cell Carcinoma by Targeting Cancer Cell Metabolism

Background: Both mitochondrial dysfunction and aerobic glycolysis are signs of growing aggressive cancer. If altered metabolism of cancer cell is intended, using the glycolysis inhibitor (2-deoxyglucose (2DG)) would be a viable therapeutic method. The AMP-activated protein kinase (AMPK), as a metabolic sensor, could be activated with metformin and it can also launch a p53-dependent metabolic ch...

متن کامل

2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism.

Exposure to ionizing radiation is believed to cause cell injury via the production of free radicals that are thought to induce oxidative damage. It has been proposed that exposure to agents that enhance oxidative stress-induced injury by disrupting thiol metabolism may sensitize cells to the cytotoxic effects of ionizing radiation. Recently, it has been shown that glucose deprivation selectivel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 35 3  شماره 

صفحات  -

تاریخ انتشار 2009