3,3′-Diindolylmethane Protects against Cardiac Hypertrophy via 5′-Adenosine Monophosphate-Activated Protein Kinase-α2
نویسندگان
چکیده
PURPOSE 3,3'-Diindolylmethane (DIM) is a natural component of cruciferous plants. It has strong antioxidant and anti-angiogenic effects and promotes the apoptosis of a variety of tumor cells. However, little is known about the critical role of DIM on cardiac hypertrophy. In the present study, we investigated the effects of DIM on cardiac hypertrophy. METHODS Multiple molecular techniques such as Western blot analysis, real-time PCR to determine RNA expression levels of hypertrophic, fibrotic and oxidative stress markers, and histological analysis including H&E for histopathology, PSR for collagen deposition, WGA for myocyte cross-sectional area, and immunohistochemical staining for protein expression were used. RESULTS In pre-treatment and reverse experiments, C57/BL6 mouse chow containing 0.05% DIM (dose 100 mg/kg/d DIM) was administered one week prior to surgery or one week after surgery, respectively, and continued for 8 weeks after surgery. In both experiments, DIM reduced to cardiac hypertrophy and fibrosis induced by aortic banding through the activation of 5'-adenosine monophosphate-activated protein kinase-α2 (AMPKα2) and inhibition of mammalian target of the rapamycin (mTOR) signaling pathway. Furthermore, DIM protected against cardiac oxidative stress by regulating expression of estrogen-related receptor-alpha (ERRα) and NRF2 etc. The cardioprotective effects of DIM were ablated in mice lacking functional AMPKα2. CONCLUSION DIM significantly improves left ventricular function via the activation of AMPKα2 in a murine model of cardiac hypertrophy.
منابع مشابه
3,3'-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5'-adenosine monophosphate-activated protein kinase-α.
3,3'-Diindolylmethane (DIM) is the major product of the acid-catalyzed condensation of indole-3-carbinol (I3C), a component of extracts of Brassica food plants. Numerous studies have suggested that DIM has several beneficial biological activities, including elimination of free radicals, antioxidant and anti-angiogenic effects and activation of apoptosis of various tumor cells. In the present st...
متن کاملMetformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase α2.
Activation of AMP-activated protein kinase (AMPK)-α2 protects the heart against pressure overload-induced heart failure in mice. Although metformin is a known activator of AMPK, it is unclear whether its cardioprotection acts independently of an AMPKα2-dependent pathway. Because the role of AMPKα1 stimulation on remodeling of failing hearts is poorly defined, we first studied the effects of dis...
متن کاملMyostatin regulates energy homeostasis in the heart and prevents heart failure.
RATIONALE Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. OBJECTIVE Here, we aimed to decipher the role of myostatin and myostatin-dependent si...
متن کاملA Novel Mechanism by Which SDF-1β Protects Cardiac Cells From Palmitate-Induced Endoplasmic Reticulum Stress and Apoptosis via CXCR7 and AMPK/p38 MAPK-Mediated Interleukin-6 Generation
We studied the protective effect of stromal cell-derived factor-1β (SDF-1β) on cardiac cells from lipotoxicity in vitro and diabetes in vivo. Exposure of cardiac cells to palmitate increased apoptosis by activating NADPH oxidase (NOX)-associated nitrosative stress and endoplasmic reticulum (ER) stress, which was abolished by pretreatment with SDF-1β via upregulation of AMP-activated protein kin...
متن کاملEvidence for the importance of adiponectin in the cardioprotective effects of pioglitazone.
The favorable effects of the peroxisome proliferator-activated receptor-gamma ligand pioglitazone on glucose metabolism are associated with an increase in the fat-derived hormone adiponectin in the bloodstream. A recent clinical trial, Prospective Pioglitazone Clinical Trial in Macrovascular Events, demonstrated that pioglitazone improved cardiovascular outcomes in patients with type 2 diabetes...
متن کامل