Simulated optic flow and extrastriate cortex. I. Optic flow versus texture.
نویسندگان
چکیده
A locomoting observer sees a very different visual scene than an observer at rest: images throughout the visual field accelerate and expand, and they follow approximately radial outward paths from a single origin. This so-called optic flow field is presumably used for visual guidance, and it has been suggested that particular areas of visual cortex are specialized for the analysis of optic flow. In the cat, the lateral suprasylvian visual area (LS) is a likely candidate. To test the hypothesis that LS is specialized for analysis of optic flow fields, we recorded cell responses to optic flow displays. Stimulus movies simulated the experience of a cat trotting slowly across an endless plain covered with small balls. In different simulations we varied the size of balls, their organization (randomly or regularly dispersed), and their color (all one gray level, or multiple shades of gray). For each optic flow movie, a "texture" movie composed of the same elements but lacking optic flow cues was tested. In anesthetized cats, > 500 neurons in LS were studied with a variety of movies. Most (70%) of 454 visually responsive cells responded to optic flow movies. Visually responsive cells generally preferred optic flow to texture movies (69% of those responsive to any movie). The direction in which a movie was shown (forward or reverse) was also an important factor. Most cells (68%) strongly preferred forward motion, which corresponded to visual experience during locomotion.
منابع مشابه
Simulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli.
In the preceding paper we described the responses of cells in the cat's lateral suprasylvian visual area (LS) to large-field optic flow and texture movies. To assess response properties such as direction selectivity, cells were also tested with moving bar stimuli. We expected that there would be good agreement between response properties elicited with optic flow movies and those revealed with b...
متن کاملReceptive-field structure of optic flow responsive Purkinje cells in the vestibulocerebellum of pigeons.
Neurons sensitive to optic flow patterns have been recorded in the the olivo-vestibulocerebellar pathway and extrastriate visual cortical areas in vertebrates, and in the visual neuropile of invertebrates. The complex spike activity (CSA) of Purkinje cells in the vestibulocerebellum (VbC) responds best to patterns of optic flow that result from either self-rotation or self-translation. Previous...
متن کاملSelective attention modulates electrical responses to reversals of optic-flow direction
Attended stimuli typically evoke larger event-related potentials (ERPs) than unattended stimuli. We previously reported an exception when an optic-flow pattern is interleaved with stationary dots. Reversals of motion direction evoked a larger N200 peak when attention was directed to the stationary dots. We replicated and further characterized this result: the N200 enhancement was eliminated whe...
متن کاملModulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey.
Perception of two- and three-dimensional optic flow critically depends upon extrastriate cortices that are part of the 'dorsal stream' for visual processing. Neurons in area 7a, a sub-region of the posterior parietal cortex, have a dual sensitivity to visual input and to eye position. The sensitivity and selectivity of area 7a neurons to three sensory cues - optic flow, retinotopic stimulus pos...
متن کاملMotion-form interactions beyond the motion integration level: evidence for interactions between orientation and optic flow signals.
Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 2 شماره
صفحات -
تاریخ انتشار 1997