Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films

نویسندگان

  • Elena Fortunati
  • Debora Puglia
  • Antonio Iannoni
  • Andrea Terenzi
  • José Maria Kenny
  • Luigi Torre
چکیده

Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer content. Filmature parameters were also adjusted and optimized for different formulations, in order to obtain similar thickness for different systems. Differential scanning calorimeter (DSC) results and evaluation of solubility parameter confirmed that similar miscibility was obtained for ATBC and ISE in PLA, while the two selected plasticizers resulted as not efficient for plasticization of PBS, to the limit that the PBS-30ATBC resulted as not processable. On the basis of these results, isosorbide-based plasticizer was considered a suitable agent for modification of a selected blend (PLA/PBS 80:20) and two mixing approaches were used to identify the role of ISE in the plasticization process: results from mechanical analysis confirmed that both produced PLA-PBS blends (PLA85-ISE15)-PBS20 and (PLA80-PBS20)-ISE15 could guarantee advantages in terms of deformability, with respect to the PLA80-PBS20 reference film, suggesting that the promising use of these stretchable PLA-PBS based films plasticized with isosorbide can provide novel solutions for food packaging applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological and mechanical properties of Poly (lactic Acid) /zinc oxide nanocomposite films

Objective(s): Nowadays, tendency to use green materials can reduce environmental pollution and plastic waste. Poly (lactic Acid) PLA is one of the natural biodegradable polymers mainly used in the production of bioplastics for packaging which is made of non-toxic compounds and is easily biodegradable. In this research, the effect of 1, 3 and 5% nanocomposite zinc oxide on the morphological, mec...

متن کامل

Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion

Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LA...

متن کامل

Design, Synthesis and Characterisation of Novel Biodegradable Aliphatic Copolyesters- Poly(ethylene sebacate-co-butylene succinate) and Poly(ethylene sebacate-co-butylene adipate)

Synthesis of novel aliphatic biodegradable copolyesters namely Poly (ethylene sebacateco-butylene succinate) and Poly (ethylene sebacate-co-butylene adipate) were carried out using Poly (butylene Succinate), Poly (Butylene Adipate) and Poly (Ethylene Sebacate) in presence of Poly Phosphoric acid. Synthesis of Poly (Butylene Succinate), Poly (Butylene Adipate) and Poly (Ethylene Sebacate) were c...

متن کامل

Antimicrobial properties and permeability of Poly lactic Acid nanocomposite films containing Zinc Oxide

Objective(s): Since microbial contamination can reduce the shelf life of the foodstuff and there is a potential for the growth of some pathogen microorganisms, films containing antimicrobial agents were produced, which are also biodegradable. In this study, the effect of 1, 3 and 5% nano-zinc oxide on antimicrobial properties and permeability of poly lactic acid film was invest...

متن کامل

Antifungal activity of nano-composite films based on Poly Lactic Acid

Objective(s): Nanocomposite active packaging systems were used to prepare antimicrobial and antifungal properties. This study was to investigate the physical and antimicrobial activity of prepared films against three types of aflatoxin producing fungi Aspergillus Flavus. Material and methods: For investigating the effect of antibacterial nano-covers, the direct contact of 0, 1%, 3% and 5%...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017