Two Voltage-Gated, Calcium Release Channels Coreside in the Vacuolar Membrane of Broad Bean Guard Cells.
نویسندگان
چکیده
Voltage-gated, Ca2+ release channels have been characterized at the vacuolar membrane of broad bean guard cells using patch clamps of excised, inside-out membrane patches. The most prevalent Ca2+ release channel had a conductance of 27 pS over voltages negative of the reversal potential (Erev) (cytosol referenced to vacuole), with 5,10, or 20 mM Ca2+ as the charge carrier on the vacuolar side and 50 mM K+ on the cytosolic side. The single-channel current saturated at ~2.6 pA. The relative permeability of the channel was in the range of a Pca2+:Pk+ ratio of 6:1. Divalent cations could act as charge carriers on the vacuolar side with a conductance series of Ba2+ > Mg2+ > Sr2+ > Ca2+ and a selectivity sequence of Ca2+ [approximately equals to] Ba2+ [approximately equals to] Sr2+ > Mg2+. The channel was gated open by cytosol-negative (physiological) transmembrane voltages, increases in vacuolar Ca2+ concentration, and increases in the vacuolar pH. The channel was potently inhibited by the Ca2+ channel blockers Gd3+ (half-maximal inhibition at 10.3 [mu]M) and nifedipine (half-maximal inhibition at 77 [mu]M). The stilbene derivative 4,4[prime]-diisothiocyano-2,2[prime]-stilbene disulfonate was also inhibitory (half-maximal inhibition for a 4-min incubation period at 6.3[mu]M). The 27-pS channel coresides in individual guard cell vacuoles with a less frequently observed 14-pS Ca2+ release channel that had similar, although not identical, voltage dependence and gating characteristics and a lower selectivity for Ca2+ over K+. The requirement for two channels with a similar function at the vacuolar membrane of guard cells is discussed.
منابع مشابه
Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure.
Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic...
متن کاملCalcium-Activated K+ Channels and Calcium-lnduced Calcium Release by Slow Vacuolar lon Channels in Guard Cell Vacuoles lmplicated in the Control of Stomatal Closure
Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic...
متن کاملVacuolar calcium channels.
The central vacuole is the largest Ca2+ store in a mature plant cell. Ca2+ release from this store contributes to Ca2+-mediated intracellular signalling in a variety of physiological responses. However, the routes for vacuolar Ca2+ release are not well characterized. To date, at least two voltage-dependent and two ligand-gated Ca2+-permeable channels have been reported in plant vacuoles. Howeve...
متن کاملLigand- and voltage-gated calcium release channels at the vacuolar membrane.
Introduction Transduction of a wide range of signals in plants is thought to involve modulation of cytosolic free Ca2+ ([Ca“],). Primary signals which increase [Ca”], include red light (acting via phytochrome), cold shock, fungal elicitors, cessation of photosynthesis, several hormones [ 11, mechanical stimulation [2], oligogalacturonides [3] and oxidative stress [4]. Each of these signals lead...
متن کاملCalcium Signals from the Vacuole
The vacuole is by far the largest intracellular Ca(2+) store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca(2+) release and Ca(2+) uptake is summarized, and how different vacuolar Ca(2+) channels and Ca(2+) pumps may contribute to Ca(2+) signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 6 5 شماره
صفحات -
تاریخ انتشار 1994