Regular Banach Spaces and Large Deviations of Random Sums

نویسنده

  • Arkadi Nemirovski
چکیده

1 Overview A typical result on large deviations of sums with random terms states that if ξ t are independent scalar random variables with zero means and such that " ξ t has as light tails as a Gaussian N (0, 4σ 2 t) random variable " , specifically, E exp{ξ 2 t /σ 2 t } ≤ O(1), (1) and S N = N t=1 ξ t , then Prob |S N | > t σ 2 1 + ... + σ 2 N ≤ O(1) exp{−O(1)t 2 } (2) (from now on, all O(1)'s are appropriate positive absolute constants). Our goal is to get similar results for the case when ξ t are independent random vectors with zero means in a finite-dimensional vector space E equipped with norm · , S N = N t=1 ξ t and the " light tail " condition (1) is stated as E exp{{ξ t 2 /σ 2 t } ≤ exp{1}. (3) Note that a straightforward guess E{ξ t } = 0∀t & (3) & {ξ t } are independent ⇒ Prob S N > t σ 2 1 + ... + σ 2 N ≤ O(1) exp{−O(1)t 2 } (4) is not true, as it is shown by the following example: • E = R n , x = x 1 ≡ j |x j |, • (ξ t) j = t , j = t(mod n) 0, otherwise , where 1 , 2 , ... are independent random variables taking values ±1 with probability 1/2, • σ t = 1, i ≥ 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laws of large numbers for triangular arrays of rowwise independent random fuzzy sets

The paper presents quite general weak and strong laws of large numbers for weighted sums of triangular arrays of random fuzzy sets. The proofs of the results rely on an appropriate identification of random fuzzy sets with random elements in Banach spaces which satisfy a useful convexity property.

متن کامل

Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes

In this paper we continue the investigation of the spectral theory and exponential asymptotics of primarily discrete-time Markov processes, following Kontoyiannis and Meyn [34]. We introduce a new family of nonlinear Lyapunov drift criteria, which characterize distinct subclasses of geometrically ergodic Markov processes in terms of simple inequalities for the nonlinear generator. We concentrat...

متن کامل

Exponential asymptotics for intersection local times of stable processes and random walks

We study large deviations for intersection local times of p independent d-dimensional symmetric stable processes of index β, under the condition p(d − β) < d. Our approach is based on FeynmanKac type large deviations, moment computations and some techniques from probability in Banach spaces.

متن کامل

Mean Convergence Theorem for Multidimensional Arrays of Random Elements in Banach Spaces

where (n1,n2, . . . ,nd)= n∈ Z+. Recently, Thanh [11] proved (1.1) under condition of uniform integrability of {|Xn|p, n∈ Z+}. Mean convergence theorems for sums of random elements Banach-valued are studied by many authors. The reader may refer to Wei and Taylor [12], Adler et al. [2], Rosalsky and Sreehari [9], or more recently, Rosalsky et al. [10], Cabrera and Volodin [3]. However, we are un...

متن کامل

Strong Laws of Large Numbers for Weighted Sums of Random Elements in Normed Linear Spaces

Consider a sequence of independent random elements {Vn, n > in a real separable normed linear space (assumed to be a Banach space in most of the results), and sequences of constants {a,, n > and {ha, n with 0 < b, "[" oo. Sets of conditions are provided for {an(V EVn) n > to obey a general strong law of large numbers of the form aj(Vj EVj)/bn --> 0 almost certainly. The hypotheses involve the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004