Necessary and sufficient conditions for orthogonal similarity transformations to obtain the Ritz values
نویسندگان
چکیده
It is a well-known fact that while reducing a symmetric matrix into a similar tridiagonal one, the already tridiagonal matrix in the partially reduced matrix has as eigenvalues the Lanczos-Ritz values (see e.g. [Golub G. and Van Loan C.] ). This behavior is also shared by the reduction algorithm which transforms symmetric matrices via orthogonal similarity transformations to semiseparable form (see [Van Barel, Vandebril, Mastronardi]). Moreover also the orthogonal reduction to Hessenberg form has a similar behavior with respect to the Arnoldi-Ritz values. In this paper we investigate the orthogonal similarity transformations creating this behavior. Two easy conditions are derived, which provide necessary and sufficient conditions which have to be placed on the orthogonal similarity transformation, such that the partially reduced matrices have the desired convergence behavior. The conditions are easy to check as they demand that in every step of the reduction algorithm two particular matrices need to have a zero block.
منابع مشابه
Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملDuals of Some Constructed $*$-Frames by Equivalent $*$-Frames
Hilbert frames theory have been extended to frames in Hilbert $C^*$-modules. The paper introduces equivalent $*$-frames and presents ordinary duals of a constructed $*$-frame by an adjointable and invertible operator. Also, some necessary and sufficient conditions are studied such that $*$-frames and ordinary duals or operator duals of another $*$-frames are equivalent under these conditions. W...
متن کاملThe Lanczos-Ritz values appearing in an orthogonal similarity reduction of a matrix into semiseparable form
It is well known how any symmetric matrix can be reduced by an orthogonal similarity transformation into tridiagonal form. Once the tridiagonal matrix has been computed, several algorithms can be used to compute either the whole spectrum or part of it. In this paper, we propose an algorithm to reduce any symmetric matrix into a similar semiseparable one of semiseparability rank 1, by orthogonal...
متن کاملNonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach
In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کامل