Inactivation of TRPM2 Channels by Extracellular Divalent Copper
نویسندگان
چکیده
Cu2+ is an essential metal ion that plays a critical role in the regulation of a number of ion channels and receptors in addition to acting as a cofactor in a variety of enzymes. Here, we showed that human melastatin transient receptor potential 2 (hTRPM2) channel is sensitive to inhibition by extracellular Cu2+. Cu2+ at concentrations as low as 3 µM inhibited the hTRPM2 channel completely and irreversibly upon washing or using Cu2+ chelators, suggesting channel inactivation. The Cu2+-induced inactivation was similar when the channels conducted inward or outward currents, indicating the permeating ions had little effect on Cu2+-induced inactivation. Furthermore, Cu2+ had no effect on singe channel conductance. Alanine substitution by site-directed mutagenesis of His995 in the pore-forming region strongly attenuated Cu2+-induced channel inactivation, and mutation of several other pore residues to alanine altered the kinetics of channel inactivation by Cu2+. In addition, while introduction of the P1018L mutation is known to result in channel inactivation, exposure to Cu2+ accelerated the inactivation of this mutant channel. In contrast with the hTRPM2, the mouse TRPM2 (mTRPM2) channel, which contains glutamine at the position equivalent to His995, was insensitive to Cu2+. Replacement of His995 with glutamine in the hTRPM2 conferred loss of Cu2+-induced channel inactivation. Taken together, these results suggest that Cu2+ inactivates the hTRPM2 channel by interacting with the outer pore region. Our results also indicate that the amino acid residue difference in this region gives rise to species-dependent effect by Cu2+ on the human and mouse TRPM2 channels.
منابع مشابه
The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification.
TRPM2 is a calcium-permeable non-selective cation channel expressed in the plasma membrane and in lysosomes that is critically involved in aggravating reactive oxygen species (ROS)-induced inflammatory processes and has been implicated in cell death. TRPM2 is gated by ADP-ribose (ADPR) and modulated by physiological processes that produce peroxide, cyclic ADP-ribose (cADPR), nicotinamide adenin...
متن کاملFour Ca2+ Ions Activate TRPM2 Channels by Binding in Deep Crevices near the Pore but Intracellularly of the Gate
TRPM2 is a tetrameric Ca(2+)-permeable channel involved in immunocyte respiratory burst and in postischaemic neuronal death. In whole cells, TRPM2 activity requires intracellular ADP ribose (ADPR) and intra- or extracellular Ca(2+), but the mechanism and the binding sites for Ca(2+) activation remain unknown. Here we study TRPM2 gating in inside-out patches while directly controlling intracellu...
متن کاملTRPM2-mediated intracellular Zn2+ release triggers pancreatic β-cell death.
Reactive oxygen species (ROS) can cause pancreatic β-cell death by activating transient receptor potential (melastatin) 2 (TRPM2) channels. Cell death has been attributed to the ability of these channels to raise cytosolic Ca2+. Recent studies however revealed that TRPM2 channels can also conduct Zn2+, but the physiological relevance of this property is enigmatic. Given that Zn2+ is cytotoxic, ...
متن کاملIdentification of Pore Residues Engaged in Determining Divalent Cationic Permeation in Transient Receptor Potential Melastatin Subtype Channel 2*S⃞
The molecular basis for divalent cationic permeability in transient receptor potential melastatin subtype (TRPM) channels is not fully understood. Here we studied the roles of all eight acidic residues, glutamate or aspartate, and also the glutamine residue between pore helix and selectivity filter in the pore of TRPM2 channel. Mutants with alanine substitution in each of the acidic residues, e...
متن کاملCa Enhances U-Type Inactivation of N-Type (CaV2.2) Calcium Current in Rat Sympathetic Neurons
Goo, Yong Sook, Wonil Lim, and Keith S. Elmslie. Ca enhances U-type inactivation of N-type (CaV2.2) calcium current in rat sympathetic neurons. J Neurophysiol 96: 1075–1083, 2006. First published June 7, 2006; doi:10.1152/jn.01294.2005. Ca -dependent inactivation (CDI) has recently been shown in heterologously expressed N-type calcium channels (CaV2.2), but CDI has been inconsistently observed ...
متن کامل