In vivo lineage tracing reveals Axin2-expressing, long-lived cortical thymic epithelial progenitors in the postnatal thymus

نویسندگان

  • Si Hui Tan
  • Roel Nusse
چکیده

In the thymus, cortical and medullary thymic epithelial cells (TECs) are instrumental for generating a repertoire of functional T cells. Hence, there has been much interest in the ontogeny of TECs. While medullary TEC (mTEC) and bipotent progenitors have been identified, the existence of a cortical TEC (cTEC) progenitor remains ambiguous. In this study, we used lineage tracing based on a target gene of the Wnt pathway, Axin2. We found that Axin2 initially labels cells in both the cortical and medullary compartments. Using Axin2-CreERT2 mice to track the fate of labelled cells, we identified long-lived cortical TEC progenitors that give rise to expanding clones and contribute to homeostasis in postnatal thymus. In contrast, no clonal expansion was found in the medullary or in the K5K8-double positive compartments. The identification of cTEC progenitors and their regulation by Wnt signaling have important implications for our understanding of thymus physiology during homeostasis and TEC-related disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic spatio‐temporal contribution of single β5t+ cortical epithelial precursors to the thymus medulla

Intrathymic T-cell development is critically dependent on cortical and medullary thymic epithelial cells (TECs). Both epithelial subsets originate during early thymus organogenesis from progenitor cells that express the thymoproteasome subunit β5t, a typical feature of cortical TECs. Using in vivo lineage fate mapping, we demonstrate in mice that β5t(+) TEC progenitors give rise to the medullar...

متن کامل

Generation of both cortical and Aire+ medullary thymic epithelial compartments from CD205+ progenitors

In the adult thymus, the development of self-tolerant thymocytes requires interactions with thymic epithelial cells (TECs). Although both cortical and medullary TECs (cTECs/mTECs) are known to arise from common bipotent TEC progenitors, the phenotype of these progenitors and the timing of the emergence of these distinct lineages remain unclear. Here, we have investigated the phenotype and devel...

متن کامل

Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage.

The thymus is essential for T-cell development. Here, we focus on the role of the transcription factor Foxn1 in the development and function of thymic epithelial cells (TECs) of the mouse. TECs are of endodermal origin; they initially express Foxn1 and give rise to orthotopic (thoracic) and additional (cervical) thymi. Using Foxn1-directed cytoablation, we show that during embryogenesis, cervic...

متن کامل

Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment

Thymic T cell lineage commitment is dependent on Notch1 (N1) receptor-mediated signaling. Although the physiological ligands that interact with N1 expressed on thymic precursors are currently unknown, in vitro culture systems point to Delta-like 1 (DL1) and DL4 as prime candidates. Using DL1- and DL4-lacZ reporter knock-in mice and novel monoclonal antibodies to DL1 and DL4, we show that DL4 is...

متن کامل

Serial progression of cortical and medullary thymic epithelial microenvironments

Thymic epithelial cells (TECs) provide key instructive signals for T-cell differentiation. Thymic cortical (cTECs) and medullary (mTECs) epithelial cells constitute two functionally distinct microenvironments for T-cell development, which derive from a common bipotent TEC progenitor. While seminal studies have partially elucidated events downstream of bipotent TECs in relation to the emergence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017