Effects of forest fragmentation on the effective and realized gene flow of Neotropical tree species: implications for genetic conservation

نویسنده

  • Alexandre Sebbenn
چکیده

Tree species are key organisms of forest ecosystems, due their size and extended life, providing the environmental setting for many other living organisms. The levels of genetic diversity and the effective population sizes are essential issues for the maintenance and survival of tree species populations, because they direct adaptation to the current environment and future environmental changes. Forest fragmentation around the world is a fact, affecting many animal and plant populations in all continents. In Brazil, forest fragmentation and selective logging are the two main problems affecting populations of tropical tree species. For example, the Atlantic Forest was intensively destroyed and fragmented during the last century. Today, only between 11 and 17% of the original areas remain, generally split into small forest fragments or isolated trees in pastures and agricultural lands. In the Atlantic Forest, only 3% of the original area of the Araucaria Forest biome in southern Brazil, remains. Forest fragmentation is especially drastic in tropical forest biomes, due to the very high species diversity, associated to low population density (<1 tree/ ha). Thus, after forest fragmentation takes place, the remaining fragmented forest may contain the same species diversity, but the populations are strongly reduced, and, in some cases, less than a dozen reproductive individuals remain. The bottleneck (size reduction of the reproductive population) caused by forest fragmentation associated to spatial isolation of the remaining stands may cause the loss of genetic diversity, an increase in inbreeding and relatedness, reducing the effective population size and blocking seeds and pollen migration inside the stands. These hypotheses have been tested in some tropical tree species of the Araucaria Forest and semicidual Atlantic Forest, including Araucaria angustifolia, Copaifera langsdorffii, Myracrodruon urundeuva and Hymenaea stigonocarpa, using microsatellite markers and parentage analysis. More specifically, in these studies we tried to answer the following questions: Can spatial isolation of tree populations following forest fragmentation block seed and pollen migration (gene flow)? What is the distance and patterns of seed and pollen dispersal in populations of tree species living within fragmented stands? Is there intra-population spatial genetic structure (SGS) in the adults and regeneration, and where is it higher, in adults or regeneration after forest fragmentation? Can forest fragmentation really reduce the genetic diversity and effective population size and increase the inbreeding and relatedness within populations? What is the necessary number of seed trees to collect seeds aiming at ex situ conservation and environmental reforestations plans with a reference effective population size that provides a minimum evolutionary potential? Knowledge of these issues is crucial to delineate strategies for in situ and ex situ conservations, tree breeding and environmental restoration plans. As many tropical trees are long lived individuals, established before forest fragmentation had occurred (<100 years), seeds, seedlings and juveniles, established after forest fragmentation have been included in the samples. Thus, these studies have been based on the sampling of all reproductive trees regenerates (realized seed and pollen dispersal), as well as open-pollinated seed (effective pollen dispersal). All adult trees and regenerates were also mapped (x and y coordinates), the diameter at breast height (dbh) and/ or total height measured and in the case of dioecious species, all reproductive trees were also sexed. We used Correspondence: [email protected] Instituto Florestal de São Paulo, Brazil Sebbenn BMC Proceedings 2011, 5(Suppl 7):O6 http://www.biomedcentral.com/1753-6561/5/S7/O6

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in Genetic Structure among Fagus orientalis Lipsky (Oriental Beech) Populations under Different Management Conditions: Implications for in situ Gene Conservation

Resource sustainability requires a thorough understanding of the influence of forest management programs on the conservation of genetic diversity in tree populations. To observe how differences in forest management affect the genetic structure of Fagus orientalis Lipsky (oriental beech), we evaluated thirteen beech sites across Hyrcanian forests, based on six microsatellite loci. Significant di...

متن کامل

Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation

We used mitochondrial gene sequences to reconstruct phylogenetic relationships among subspecies of the bushmaster, Lachesis muta. These large vipers are widely distributed in lowland tropical forests in Central and South America, where three of four allopatric subspecies are separated by montane barriers. Our phylogeny indicates that the four subspecies belong to two clades, the Central America...

متن کامل

Phylogeny of gazelles in some islands of Iran based on mtDNA sequences: Species identification and implications for conservation

Different species of gazelles are among the most endangered mammals on the Asian steppes and occur in the central, southern and northwestern regions of Iran. The previous conservation efforts in this region have been incomplete due to confusion about the phylogenetic relationship among various populations. So that, different conservation programs such as ex-situ breeding and transfer of captive...

متن کامل

Social organization and genetic structure: insights from codistributed bat populations.

The impact of ecology and social organization on genetic structure at landscape spatial scales, where gene dynamics shape evolution as well as determine susceptibility to habitat fragmentation, is poorly understood. Attempts to assess these effects must take into account the potentially confounding effects of history. We used microsatellites to compare genetic structure in seven bat species wit...

متن کامل

Genetic variability and relationship of pod and seed traits in Pongamia Pinnata (L.) Pierre., a potential agroforestry tree

Screening of twenty-four candidate plus trees from naturally available Pongamia pinnata genetic resources was carried out to elucidate the genetic variation and relationship of pod and seed traits on germination capacity to select the best planting material for higher productivity. The experiment conducted at Forest Research Centre, Institute of Forest Productivity Mandar, Ranchi during 2005-20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011