Tightness for a Stochastic Allen–cahn Equation
نویسندگان
چکیده
We study an Allen–Cahn equation perturbed by a multiplicative stochastic noise that is white in time and correlated in space. Formally this equation approximates a stochastically forced mean curvature flow. We derive a uniform bound for the diffuse surface area, prove the tightness of solutions in the sharp interface limit, and show the convergence to phase-indicator functions.
منابع مشابه
The existence of global attractor for a Cahn-Hilliard/Allen-Cahn equation
In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0
متن کاملFinite Element Methods for the Stochastic Allen-Cahn Equation with Gradient-type Multiplicative Noise
This paper studies finite element approximations of the stochastic Allen–Cahn equation with gradient-type multiplicative noise that is white in time and correlated in space. The sharp interface limit—as the diffuse interface thickness vanishes—of the stochastic Allen–Cahn equation is formally a stochastic mean curvature flow which is described by a stochastically perturbed geometric law of the ...
متن کاملA Finite Element Method via Noise Regularization for the Stochastic Allen-cahn Problem
We study finite element approximations of stochastic partial differential equations of Ginzburg-Landau type and the main paradigm considered in this paper is the stochastic Allen-Cahn model. We first demonstrate that the constructed stochastic finite element approximations are within an arbitrary level of tolerance from the corresponding one-dimensional stochastic partial differential equation;...
متن کاملOn the Backward Euler Approximation of the Stochastic Allen-Cahn Equation
We consider the stochastic Allen-Cahn equation perturbed by smooth additive Gaussian noise in a spatial domain with smooth boundary in dimension d ≤ 3, and study the semidiscretization in time of the equation by an implicit Euler method. We show that the method converges pathwise with a rate O(∆tγ) for any γ < 1 2 . We also prove that the scheme converges uniformly in the strong Lp-sense but wi...
متن کاملOn the short time asymptotic of the stochastic Allen-Cahn equation
A description of the short time behavior of solutions of the Allen-Cahn equation with a smoothened additive noise is presented. The key result is that in the sharp interface limit solutions move according to motion by mean curvature with an additional stochastic forcing. This extends a similar result of Funaki [9] in spatial dimension n = 2 to arbitrary dimensions. Resumé On étudie le comportem...
متن کامل