Dihydrolipoamide dehydrogenase-binding protein of the human pyruvate dehydrogenase complex. DNA-derived amino acid sequence, expression, and reconstitution of the pyruvate dehydrogenase complex.

نویسندگان

  • R A Harris
  • M M Bowker-Kinley
  • P Wu
  • J Jeng
  • K M Popov
چکیده

Protein X, recently renamed dihydrolipoamide dehydrogenase-binding protein (E3BP), is required for anchoring dihydrolipoamide dehydrogenase (E3) to the dihydrolipoamide transacetylase (E2) core of the pyruvate dehydrogenase complexes of eukaryotes. DNA and deduced protein sequences for E3BP of the human pyruvate dehydrogenase complex are reported here. With the exception of only a single lipoyl domain, the protein has a segmented multi-domain structure analogous to that of the E2 component of the complex. The protein has 46% amino acid sequence identity in its amino-terminal region with the second lipoyl domain of E2, 38% identity in its central region with the putative peripheral subunit-binding domain of E2, and 50% identity in its carboxyl-terminal region with the catalytic inner core domain of E2. The similarity in the latter domain stands in contrast to E3BP of Saccharomyces cerevisiae, which is quite different from its homologous transacetylase in this region. The putative catalytic site histidine residue present in the inner core domains of all dihydrolipoamide acyltransferases is replaced by a serine residue in human E3BP; thus, catalysis of coenzyme A acetylation by this protein is unlikely. Coexpression of cDNAs for E3BP and E2 resulted in the formation of an E2.E3BP subcomplex that spontaneously reconstituted the pyruvate dehydrogenase complex in the presence of native E3 and recombinant pyruvate decarboxylase (E1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical and molecular characterization of the Alcaligenes eutrophus pyruvate dehydrogenase complex and identification of a new type of dihydrolipoamide dehydrogenase.

Sequence analysis of a 6.3-kbp genomic EcoRI-fragment of Alcaligenes eutrophus, which was recently identified by using a dihydrolipoamide dehydrogenase-specific DNA probe (A. Pries, S. Hein, and A. Steinbüchel, FEMS Microbiol. Lett. 97:227-234, 1992), and of an adjacent 1.0-kbp EcoRI fragment revealed the structural genes of the A. eutrophus pyruvate dehydrogenase complex, pdhA (2,685 bp), pdhB...

متن کامل

Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato.

The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) tuber mitochondria was purified 40-fold to a specific activity of 5.60 micromol/min per mg of protein. The activity of the complex depended on pyruvate, divalent cations, NAD+ and CoA and was competitively inhibited by both NADH and acetyl-CoA. SDS/PAGE revealed the complex consisted of seven polypeptide bands ...

متن کامل

Cloning and characterization of the dihydrolipoamide S-acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) from Arabidopsis.

An Arabidopsis cDNA encoding the dihydrolipoamide S-acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) was isolated from a lambdaPRL2 library. The cDNA is 1709 bp in length, with a continuous open reading frame of 1440 bp encoding a protein of 480 amino acids with a calculated molecular mass of 50,079 D. Southern analysis suggests that a single gene encodes plastid E2....

متن کامل

Identification of two mutations in a compound heterozygous child with dihydrolipoamide dehydrogenase deficiency.

An infant girl with elevated blood lactate, pyruvate, and plasma branched-chain amino acids was diagnosed with dihydrolipoamide dehydrogenase (E3; dihydrolipoamide: NAD+ oxidoreductase, EC 1.8.1.4) deficiency. Activities of the pyruvate dehydrogenase complex and E3 from patient were 26 and 2% of controls in blood lymphocytes, and 11 and 14% in cultured skin fibroblasts, respectively. Western bl...

متن کامل

Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein–protein interactions by the MDM2 ligand nutlin‐3

Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53-independent MDM2-drug responsive-binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin-3 responsive MDM2-binding prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 32  شماره 

صفحات  -

تاریخ انتشار 1997