Discrimination methodology of living-cells and microbeads using dielectrophoresis and fluid-induced shear force
نویسندگان
چکیده
Cell sorting is an important technology that is widely used for medical diagnosis in hospitals and cell engineering research. Among cell sorting technology, dielectrophoresis (DEP) is one of the most promising approaches for manipulating and separating biological particles because this phenomena requires no labeling procedure with a fluorescent dye or magnetic beads. In this study, we developed a precise cell sorting system by evaluating the DEP force with a liquid flow system. The DEP forces acting on a cell or polystyrene microbead (cell simulant) were characterized using a microfluidic chamber containing an electrode-array and fluid-induced shear forces. On the basis of this characterization, separation of the cells and microbeads was performed using our novel DEP cell sorting system. As a result, the living cells were trapped by the DEP force on the electrode arrays, whereas the beads passed the electrode array. In conclusion, the DEP force combined with fluidinduced shear force could separate the living cells from cell simulants.
منابع مشابه
Magnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes
Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...
متن کاملDielectrophoresis Testing of Nonlinear Viscoelastic Behaviors of Human Red Blood Cells
Dielectrophoresis in microfluidics provides a useful tool to test biomechanics of living cells, regardless of surface charges on cell membranes. We have designed an experimental method to characterize the nonlinear viscoelastic behaviors of single cells using dielectrophoresis in a microfluidic channel. This method uses radio frequency, low voltage excitations through interdigitated microelectr...
متن کاملDielectrophoretic effect of nonuniform electric fields on the protoplast cell
In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...
متن کاملYarn pulling out test and numerical solution of penetration into woven fabric target impregnated with shear thickening fluid using SiO2 /Polyethylene Glycol
In this paper, finite element model of woven fabric target has been investigated which is impacted by a cylindrical projectile. Fabrics are impregnated with Shear Thickening Fluid (STF). The effects of the (STF) have been considered as frictional effect. The STF has been made (Nano Silica and Polyethylene Glycol (PEG)) and then diluted by ethanol proportion of 3:1. Yarn pulling out test from in...
متن کاملYarn pulling out test and numerical solution of penetration into woven fabric target impregnated with shear thickening fluid using SiO2 /Polyethylene Glycol
In this paper, finite element model of woven fabric target has been investigated which is impacted by a cylindrical projectile. Fabrics are impregnated with Shear Thickening Fluid (STF). The effects of the (STF) have been considered as frictional effect. The STF has been made (Nano Silica and Polyethylene Glycol (PEG)) and then diluted by ethanol proportion of 3:1. Yarn pulling out test from in...
متن کامل