Ionic Polymer-Metal Composites (IPMC) As Biomimetic Sensors and Actuators

نویسندگان

  • M. Shahinpoor
  • Y. Bar-Cohen
  • T. Xue
  • J. O. Simpson
  • J. Smith
چکیده

This paper discusses a number of recent findings in connection with ion-exchange polymer-noble metal composites (IPMC) as biomimetic sensors and actuators. These smart composites exhibit characteristics of both actuators and sensors. Strips of these composites can undergo large bending and flapping displacement if an electric field is imposed across their thickness. Thus, in this sense they are large motion actuators. Conversely by bending the composite strip, either quasistatically or dynamically, a voltage is produced across the thickness of the strip between the two conducting electrodes attached. Thus, they are also large motion sensors. The output voltage can be calibrated for a standard size sensor and correlated to the applied loads or stresses. They can be manufactured and cut in any size and shape and in particular in the form of micro sensors and micro actuators for MEMS applications. In this paper first the sensing capability of these materials is reported. The preliminary results show the existence of a linear relationship between the output voltage and the imposed displacement for almost all cases. Furthermore, the ability of these ionic polymer-metal composites as large motion actuators and robotic manipulators is presented. Several muscle configurations are constructed to demonstrate the capabilities of these IPMC actuators. This paper further identifies key parameters involving the vibrational and resonance characteristics of sensors and actuators made with IPMC’s. When the applied signal frequency is varied, so does the displacement up to a point where large deformations are observed at a critical frequency called resonant frequency where maximum deformation is observed. Beyond which the actuator response is diminished. A data acquisition system was used to measure the parameters involved and record the results in real time basis. Furthermore, reported in this paper are load characterizations of such active polymer composites made with a noble metal such as platinum. The results showed that these actuators exhibit good force to weight characteristics in the presence of low applied voltages. Finally, reported are the cryogenic properties of these muscles for possible use by NASA in a harsh outer space environment of few Torrs and temperatures of the order of -140 degrees Celsius. These muscles are shown to work quite well in such harsh cryogenics environment and thus present a great potential as sensors and actuators that can operate at cryogenic temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prepration and Characterization of Novel Ionoic Polymers to be Used as Artificial Muscles

      The muscle-like technology would be of enormous advantages for biomedical applications such as medical implants and human assist devices. Ionic polymer metal composites (IPMCs) are one kind of biomimetic actuators. An ionic polymer metal composite composed from an ionomer with high ion exchange capacity that packed between two thin metal layers. In the present study we focused on the prep...

متن کامل

IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By

IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By Zheng Chen Ionic polymer metal composites (IPMCs) form an important category of electroactive polymers (EAPs), also known as artificial muscles. IPMCs have many potential applications in robotics, biomedical devices, and micro/nano manipulation systems. In this dissertation, a systems perspective is t...

متن کامل

Nanothorn electrodes for ionic polymer-metal composite artificial muscles

Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at ...

متن کامل

Tailoring the actuation of ionic polymer–metal composites

Ionic polymer–metal composites (IPMCs) are biomimetic actuators and sensors. A typical IPMC consists of a thin perfluorinated ionomer membrane, with noble metal electrodes plated on both faces, and neutralized with the necessary amount of cations. A cantilevered strip of IPMC responds to an electric stimulus by generating large bending motions and, conversely, produces an electric potential upo...

متن کامل

Quasi-static Positioning of Ionic Polymer-Metal Composite (IPMC) Actuators

Ionic polymer-metal composites (IPMCs) generate large bending motions under a low driving voltage (about 1 V). In this paper quasi-static actuation of IPMC is investigated with the goal of precise positioning. It is found that IPMC exhibits hysteresis between its bending curvature and the applied quasi-static voltage. The Preisach operator is proposed to model the hysteresis, and its density fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001